Bioassay Strategies for Assessment of Co-stimulation Inhibitors in Immuno-Oncology:
Considerations from Development to Commercialization

Cynthia A. Inzano
March 24, 2015
Outline

- Background of Immunomodulatory Antibodies
- Targeting Checkpoint proteins
- Inhibitory pathway
- Immunomodulatory Antibodies
- Bioassay Development and Complexities
- Considerations in Bioassay Development
- Example Bioassay
- Summary
Immune System and Tumors

- Immune response to tumors involves:
 - Foreign protein or antigen
 - Antigen Presenting Cell (APC) recognition and processing
 - APC present via Major Histocompatibility Complex (MHC) to T-cell
 - T-cell receptor recognition and activation
 - Co-Stimulation required
 - Balance of T-cell regulation through inhibitory and co-stimulatory pathways

- Tumor mechanism for immune resistance:
 - Dysregulation of immune checkpoints of effector cells:
 - T-cell and NK cell
 - Immunomodulatory antibodies
 - Agonist/antagonist activities
Approaches to Immunotherapy in Immuno-Oncology

Mechanisms of Immunomodulation

1. Immunomodulatory
 - Cancer
 - Autoimmunity

2. Properties
 - Bi-functional
 - F(ab) domain
 - Fc domain – therapeutic function
 - Target effector functions
 - FcγRs (ADCC and ADCP)
 - Inhibitory/Co-stimulatory pathways of T-cells

Inhibitory and Co-Stimulatory Checkpoints

- Targeting immune checkpoints
 - Target effector cells: T-cells stimulatory and inhibitory pathways
 - Modulate agonist and antagonist response
 - T-cell activation requires co-stimulatory interaction

Inhibitory Pathway

Inhibitory Signaling
- Block CD3/CD28 mediated activation
- Results in decreased
 - Proliferation
 - Cytokine production
 - Migration

Strategies Bioassay Development
- Understand MOA
- Cell Line
Examples of Targets in Immuno-Oncology

Approved
- Opdivo® (Nivolumab)
- Yervoy® (Ipilimumab)
- Nulojix® (Belatacept)
- Orencia® (Abatacept)

Pipeline
- Urelumab (anti-CD137)
- Lirilumab (Anti-KIR)
- Lulizumab (Anti-CD28)
- BMS-9860616 (Anti-LAG3)
- BMS-936559 (Anti-PD-L1)
- BMS-936561 (CD70)
- BMS-986178 (anti-OX-40)

Bioassay Development Complexities

- **Complex Signaling System**
 - Multiple Receptors involved
 - CD3 /anti-CD3 (primary)
 - CD28 /CD80/86 (co-stimulatory)
 - PD-1/PDL-1 (inhibitory)

- **Mechanism of Action**
 - In Vitro
 - In Vivo

- **Multiple Cellular Events**
 - Proliferation
 - Cytokine production
 - Migration
Immunomodulatory Antibodies

Yervoy® (Ipilimumab) Mechanism

T-cell Activation

T-cell Inhibition

T cell Remains Active

APC: antigen-presenting cell; CTLA-4: cytotoxic T-lymphocyte antigen-4; MHC: major histocompatibility complex; TCR: T-cell receptor.
Immunomodulatory Antibodies

Opdivo® (Nivolumab) Mechanism

Recognition of tumor by T cell through MHC/antigen interaction mediates IFNγ release and PD-L1 upregulation on tumor

Priming and activation of T cells through MHC/antigen and CD28/B7 interactions with antigen-presenting cells

Blockade of PD-1 and PD-L1 results in reactivation of T-cell–mediated tumor cell killing
Bioassay Development Considerations

- **Cell Line Selection**
 - Single or Multiple
 - Transfection
 - Beads

- **Example Signaling Pathway**
 - PI3K /Akt

- **Example Readouts**
 - Cytokine → ELISA = Absorbance
 - Reporter → Luciferase = Chemiluminescence
Example Development

Cell based Bioassay using a cytokine ELISA Kit
- Day 1 Bioassay = Cell prep, antibody dilution, incubation
- Day 2 ELISA

Evaluation of Bioassay
- Characterization of cell lines (one or two)
- Components in Bioassay
- Components in ELISA

Points to Consider in Development
- Cell Passage
- Cell Bank Quality
- Serum
Considerations for Pre-Commercial: Cell Passage

- Considerations for
 - Identification of Cell line(s)
 - Characterization and Trending
 - Passage
 - Receptor level overtime (flow cytometry)
 - Viability
 - Doubling time
 - Performance in the bioassay

Percent Viability of Two different Cell Lines over passaging

Signal-to-Noise Consistency over passaging

Receptor Density in Flow Cytometry

Antibodies per cell (ABC) vs. Passage Number

Viability vs. Passage Number

Quality Control

BMS People Strategy | People Helping Patients Prevail | Bristol-Myers Squibb
Considerations for Pre-Commercial: Cell Bank

- Developed In-House or Purchased
 - Cost
 - Speed
 - Technical expertise
 - Control/Experience

- Single use vials or Continuous Culture
 - Cost to Produce
 - Manufacturing capacity
 - QC friendly
 - Passaging hands-on-time
 - Cell Changes over time
Considerations for Pre-Commercial: Serum

Points to Consider

– Vendor to Vendor Differences
– Lot to Lot Variation
– Components within Serum
– Serum treatments
 • Heat treated/no-heat treatment
 • Gamma irradiated
– Serum alternatives

Qualification

– Passaging
– Trending
– System Suitability

http://www.saawinternational.org/cows.htm
Considerations for Pre-Commercial: Serum Vendor Differences

- Shape of Curve
 - Lower Asymptote/Upper Asymptote, Slope, EC50
Considerations for Pre-Commercial: Serum Lot Differences

- Shape of Curve
 - Lower Asymptote/Upper Asymptote, Slope, EC50
Considerations for Pre-Commercial: Serum Treatment

- Shape of Curve
 - Upper Asymptote, Slope, EC50
Example of Bioassay Accuracy from Immuno-Oncology

Summary of Bioassay Accuracy and Precision

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nominal Potency (%)</th>
<th>% Recovery</th>
<th>Mean % Recovery</th>
<th>RSD (%)</th>
<th>Acc. Crit. Mean % Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Individual Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>95</td>
<td>90</td>
<td>96</td>
<td>84</td>
<td>105</td>
</tr>
<tr>
<td>65</td>
<td>115</td>
<td>74</td>
<td>114</td>
<td>85</td>
<td>101</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>105</td>
<td>109</td>
<td>85</td>
<td>120</td>
</tr>
<tr>
<td>140</td>
<td>106</td>
<td>98</td>
<td>102</td>
<td>109</td>
<td>90</td>
</tr>
<tr>
<td>175</td>
<td>112</td>
<td>79</td>
<td>93</td>
<td>85</td>
<td>81</td>
</tr>
</tbody>
</table>
Example of Bioassay Linearity from Immuno-Oncology

\[y = 0.9645x + 2.0017 \]
\[R^2 = 0.9958 \]
Control Trending of Commercial Bioassay in Immuno-Oncology
Summary

- Immunomodulatory Antibodies
 - Complex co-stimulatory systems
- Bioassay Development
 - Impact of Particular Components
 - Cell Passaging
 - Cell Banking
 - Serum
- Exploring co-stimulatory systems
 - Relation to other mechanisms of action
 - ADCC
Acknowledgments

Bristol-Myers Squibb
- Molecular and Analytical Development
 - Marisol Palmieri
 - Vanessa Fearon
 - Xuefeng Li
 - Ryman Navoa
 - Christine VanAuken
 - Jessie Yin
 - Colleen Quinn
 - LeeAnn Benson-Ingraham
 - Ruojia Li
 - Lei Xie
 - Jeffery Glenn
 - Marcel Zocher
 - Reb Russell