Innate Immunity:
(I) Molecules & (II) Cells

Stephanie Eisenbarth, M.D., Ph.D.

FOCIS Advanced Immunology Course
2/19/18

Department of Laboratory Medicine
Yale School of Medicine

Part II: Cells (aka the Sentinels)

• Granulocytes
 – Neutrophil, Eosinophil, Basophil, Mast cell
• Monocytes/macrophages
• Dendritic cells
• Innate lymphoid cells
Myeloid Cells

- Recognize microbes
 - PRRs
 - Complement
 - Antibody
- Ingest & destroy microbes
- Kill infected/injured cells
- Regulate tissue homeostasis
- Antigen presentation
 - Help T cells

Two pathways for macrophage development

During inflammatory reactions

- Bone marrow
- Histiocytic stem cell
- Blood monocyte
- Activated macrophages in inflammation
 - Macrophages in skin, intestinal tract

Tissue-resident macrophages

- Liver
- Yolk sac
- Progenitor in yolk sac, fetal liver
- Resident tissue macrophages
 - (Kupffer cells, alveolar macrophages, microglia, etc.)

Further reading: Epelman et al. Immunity 2014
First responders recruit (Macrophages organize)

Activated macrophages secrete a range of cytokines

- IL-1β
- TNF-α
- IL-6
- CCL8
- IL-12

Local effects
- Activates vascular endothelium
- Activates lymphocytes
- Increases vascular permeability, which leads to increased entry of IgG, complement, and cells to tissues and increased fluid drainage to lymph nodes
- Lympohocyte activation
- Increased antibody production
- Chemotactic factor recruits neutrophils, basophils, and T cells to site of infection
- Activates NK cells

Systemic effects
- Fever
- Production of IL-6
- Fever: Mobilization of metabolites
- Shock
- Fever: Induces acute-phase protein production

Figure 2.21 Janeway’s Immunobiology, Ed. 7© Garland Science 2013

First responders clear pathogens and dead cells
Chronic Granulomatous Disease (CGD)

- Recurrent bacterial infection (catalase positive organisms)
- Granulomas of skin, liver, lungs, lymph nodes observed
- Gene defect:
 - gp91 phox (X-Linked)
 - p22 phox (Autosomal Recessive)
 - p47 phox (Autosomal Recessive)
 - p67 phox (Autosomal Recessive)
- Phagocytic cells ingest but do not kill bacteria due to failure to form oxygen radicals

IFNγ and macrophage activation

- Mendelian susceptibility to mycobacterial disease (MSMD) – Ifnγ-mediated protection (IL-12, Ifnγ, Stat1 defects)
 - Failure of CD4+ T cells to activate macrophage killing of intracellular bacteria

TNF blockers might interfere with this process...

Bustamante et al Semin. Immuno. 2014
Endothelium activated by cytokines
Leukocytes activated by chemokines

Endothelium activated by cytokines

Leukocytes activated by chemokines

Rolling adhesion

Tight binding

Diapedesis

Migration

Integrins seal the deal

Chemokines direct

Chemokines direct

Leukocyte migration during inflammation

Neutrophil NETs

- Neutrophil extracellular traps
- NETosis with cell death traps microbes
 - Extrusion of chromatin decorated with antimicrobial molecules (e.g., elastase, MPO)
- Role in driving autoimmunity?

Kaplan et al, JI 2012
DCs & the next phase of immunity

DCs survey for pathogens or host damage (via PRRs) and respond by processing antigens and providing "second signals"

T cell priming requires 2 signals to avoid anergy: antigen (constant) + co-stimulation (activated DC)

The innate immune system provides second signals required for lymphocyte activation

2nd signals for T cells:
- CD28: B7 family members (CD80/B7.1, CD86/B7.2)
- [opposite for PDL1,2]
- ICOS: ICOSL
- OX40: OX40L
- CD137: 4-1BBL

2nd signals for B cells:
- CR3: Activated complement components
- TLRs: PAMPs
Dendritic Cell Subsets (Spleen)

- **Plasmacytoid**
 - MDP
 - FLT3L
 - HSC
 - Embryonic Precursor

- **Conventional**
 - MDC
 - MCSF

- **Monocyte-derived**
 - TipDC
 - Patrolling Mo
 - Macrophages

Type I IFN
- T cell priming
- Inflammation

Cellular Markers
- pDC
 - PDCA-1
 - B220
 - Siglec H
 - Gr-1
 - CD8α+ DNGR1+ XCR1+
 - CD4+ CD11b+
 - TipDC
 - CD11c+ Ly6C+ Ly6G+
 - Patrolling Mo
 - CX3CR1+ Ly6G+ CCR2+

Monocyte
-FLT3L
- MCSF
DC Migration is a Critical Step in T Cell Priming

DCs migrate from peripheral tissues to lymphoid organs via lymphatic vessels, guided by chemokines such as CCL19/21.

PRR activation leads to:
- Ag processing/presentation
- Co-stimulatory molecule expression
- CCR7 expression

Innate instruction of adaptive immunity: implications

- Autoimmunity
- Allergy
- Resistance to re-infection
- Vaccination

Once this principle was understood, the role of adjuvants could be explained:
- HBV vaccine: subunit and adjuvant
- *Adjuvare* = to help
- Hundreds of different adjuvants
 - CFA, Aluminum hydroxide, MF-59 (Squalene), TLR agonists, AS04 (Alum+MPL)

Medzhitov, 2001
Questions?

• Thanks
 – A. Abbas
 – K. Rock

• Further reading
 – Janeway’s Immunobiology, 8th edition
 – Abbas, Lichtman & Pillai Cellular & Molecular Immunology, 8th edition

NK Cells (ILC1)

• Different from NKT cells

• Germline encoded receptors

• Kill cells that are missing “stop” signals
 – Inhibitory receptors
 • KIRs

• Kill cells that express foreign or stress signals
 – Activating receptors
 • CLRs
 • NKG2D
 • FcgRIII (CD16)

• Infections
• Tumors
Innate lymphoid cells

ILCs make many of the same cytokines as T cells but lack TCRs

May contribute to early cytokine responses in host defense and inflammatory diseases

<table>
<thead>
<tr>
<th>Receptor characteristic</th>
<th>Innate immunity</th>
<th>Adaptive immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity inherited in the genome</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Expressed by all cells of a particular type (e.g. macrophages)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Triggers immediate response</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Recognizes broad classes of pathogens</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Interacts with a range of molecular structures of a given type</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Encoded in multiple gene segments</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Requires gene rearrangement</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Clonal distribution</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Able to discriminate between even closely related molecular structures</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Principles of TLRs

Akira et al, Nat. Rev. Imm. 2004

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Ligand</th>
<th>Origin of ligand</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR1</td>
<td>Triacyl lipoprotein</td>
<td>Bacteria and mycobacteria</td>
<td>112, 113</td>
</tr>
<tr>
<td>TLR2</td>
<td>Lipopolysaccharide</td>
<td>Gram-negative bacteria</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Lipopolysaccharide</td>
<td>Gram-positive bacteria</td>
<td>115, 116</td>
</tr>
<tr>
<td></td>
<td>PTL3/4</td>
<td>Protein tyrosine kinase</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>TLR5</td>
<td>Lipopolysaccharide</td>
<td>Bacteria</td>
</tr>
<tr>
<td></td>
<td>TLR6</td>
<td>Lipopolysaccharide</td>
<td>Gram-positive bacteria</td>
</tr>
<tr>
<td></td>
<td>TLR7</td>
<td>Lipopolysaccharide</td>
<td>Mycobacteria</td>
</tr>
<tr>
<td></td>
<td>TLR8</td>
<td>Lipopolysaccharide</td>
<td>Mycobacteria</td>
</tr>
<tr>
<td></td>
<td>TLR9</td>
<td>Lipopolysaccharide</td>
<td>Mycobacteria</td>
</tr>
<tr>
<td></td>
<td>TLR10</td>
<td>Lipopolysaccharide</td>
<td>Mycobacteria</td>
</tr>
<tr>
<td></td>
<td>TLR11</td>
<td>Lipopolysaccharide</td>
<td>Mycobacteria</td>
</tr>
<tr>
<td>DC</td>
<td>Lipopolysaccharide</td>
<td>Bacteria</td>
<td>125</td>
</tr>
<tr>
<td>PMN</td>
<td>Lipopolysaccharide</td>
<td>Fungi</td>
<td>52</td>
</tr>
<tr>
<td>T cell</td>
<td>Lipopolysaccharide</td>
<td>Fungi</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Lipopolysaccharide</td>
<td>DC</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Lipopolysaccharide</td>
<td>Macrophage</td>
<td>52</td>
</tr>
</tbody>
</table>

*Proposed that TLRs recognize, in addition to endogenous ligands and/or other conserved modular components, a variety of other host defense molecules.

Akira et al, Nat. Rev. Imm. 2004
Timepoint: minutes-hours

1. **Block microbial invasion**
2. **Remove targeted microbes, dead cells & foreign bodies**
3. **Tissue homeostasis**

Plasma proteins \rightarrow target & kill
 - Complement
 - Pentraxins (CRP, SAA, etc.)
 - Collectins & Ficolins

Phagocytes \rightarrow eat & recruit
 - Pattern recognition receptors

Innate lymphoid cells \rightarrow kill & coordinate
 - NK cells kill things that are non-self

Increased hydrostatic pressure/permeability

Leak of protein-rich fluid into site = EDEMA

Structure of TLRs

- An extracellular domain with LRRs (Leucine Rich Repeats)
- A transmembrane domain
- A cytosolic domain with a conserved TIR (Toll-interleukin 1 Receptor) domain
 - Shared with IL-1R family