Prevention and Management of Diabetic Foot Ulcers

Rose M. Pignataro, PT, PhD, DPT, CWS
Florida Gulf Coast University
College of Health Professions and Social Work
Department of Physical Therapy and Human Performance

Session Overview

- Epidemiologic Data
 - Incidence and prevalence of DM2 & diabetic foot ulcers (DFUs)
 - Health related costs of diabetic foot disease

- Pathogenesis of diabetic foot disease & DFUs

- Risk Assessment & Preventive Management

- Evaluation & Treatment of DFUs

Epidemiologic Data

THE IMPACT OF TYPE 2 DIABETES AND ITS COMPLICATIONS
Incidence and Prevalence of DM2

• Silent disease
 • More than half of people with DM2 are unaware (Alavi, et al., 2014)
 • Screening holds critical importance – early detection

• Estimated global prevalence of DM = 366 million
 • Projected to increase to 552 million by 2030 (Brownrigg, et al., 2013)

• 7th leading cause of mortality in the US (Alavi, et al., 2014)
 • 17 million Americans with DM (Vincent & Feldman, 2004)

Prevalence of Diabetic Peripheral Neuropathy

• Lifetime prevalence of DPN = 60% (Akbari, et al., 2003)

• DPN is the most significant risk factor for diabetic foot ulcers (Alavi, 2014)

Incidence of Diabetic Foot Ulcerations

• 20-25% of all people with DM2 will experience foot ulceration within their lifetime (Akbari, et al., 2003; Alavi, et al., 2014)
 • Recurrence rate 50-70%

• Foot complications are the #1 reason for hospital admissions in people with DM 2 (Cheer, et al., 2009)

• DM2 is the greatest risk factor for non-traumatic amputation of the LE (Akbari, et al., 2003)
 • 50% of all LE amputations in the US are due to DM2
Health Related Costs

- Cost of care for closure of a simple DFU = $5000-8000 (Fard, et al., 2007)
- Average episode of care > 2 months for closure of DFU (Alavi, et al., 2014)
 - Only 33% of DFUs will heal (Alavi, et al., 2014)
 - Potential correlates – early detection, access to services
- Closure of wound more economical than amputation (Alavi, et al., 2014)
 - Healing costs without amputation = $6,664
 - Healing after amputation = $44,790

Risk of Ulceration & Delayed Healing

THE DIABETIC FOOT

Pathogenesis of Diabetic Foot Disease

- Ischemia
- Neuropathy
- Infection
- Effects of chronic hyperglycemia
Effects of Chronic Hyperglycemia

- Neuropathy
 - Increases levels of intracellular glucose in nerves
 - Increased osmolarity – swelling of neurons
 - Alters cellular metabolism
 - Accumulation of advanced glycation end products (AGEs)
 - disrupts neuronal integrity, repair mechanisms and transport (Pittenger & Vinik, 2003)

Diabetic Peripheral Neuropathy

- Trineuropathy
 - Sensory
 - Autonomic
 - Motor

- Symmetrical distribution

- Starts distally, progresses proximally

Sensory Neuropathy

- Present in 40-50% of people with DM2 within 10 years of disease onset (Alavi, et al., 2014)
- Accelerated by poor glycemic control
- Usually insidious
- Sometimes associated with neuropathic pain
Sensory Neuropathy

• Loss of protective sensation
• Decreased awareness leading to inadvertent trauma and injury
• Delay in seeking medical intervention for injury or infection due to absence of pain and discomfort

Autonomic Neuropathy

• Decreased sympathetic tone affects vascular response
• May lead to prolonged vasodilation (Akbari, et al., 2003)
 • Can lead to osteopenia
 • pathological fx, bony foot deformities (Charcot foot)
• Anhidrosis and cracking (Akbari, et al., 2003)
 • Predisposition towards ulceration

Autonomic Skin Changes

http://www.pamperedpause.com/crck_heel.jpg
http://www.foot-pain-explained.com/images/heel-fissure.png
Motor Neuropathy

- Affects intrinsic muscles of foot
 - Weakness and imbalances can contribute to foot deformities
 - Atrophy reduces padding to pressure points

- Impairs active movement of foot and ankle
 - Substituted movement patterns alter friction and shear at the sole of the foot during gait (repetitive trauma)

- Limits patient’s mobility:
 - perpetuates weight problems
 - reduces function
 - impacts control of blood sugar

Common Foot Deformities in DPN

- Plantarflexion contractures

- Claw-toe deformity

- Hallux valgus

- Forefoot varus or valgus

- Net result = increased plantar pressures at metatarsal heads (common location for neuropathic ulcers)

Claw Toe/ Hammertoe

Alavi, et al, 2014
Claw Toe Deformity

Charcot Foot

- Collapse of MLA – “rocker bottom deformity”
- Result of bone deterioration and pathologic fractures lead to deformity
- Abnormal pressure & weight bearing areas increase risk of ulceration

Rogers, et al., 2011

Acute Charcot Foot (Jeffcoate, et al., 2005)

- May be precipitated by undetected trauma due to sensory loss
 - Frank trauma vs cumulative trauma
- Trauma initiates “inflammatory cascade”
 - Increased production of osteoclasts – progressive bone lysis
- Greater susceptibility to injury - vicious cycle
 - Abnormal loading/ gait disturbances
 - Dislocation/ fracture
- Rx options are surgical correction or biomechanical accommodation – i.e. - therapeutic footwear/ orthotics (Pinzur, 2004)
Tissue Ischemia in DM2
(Alavi, et al., 2014)

- Hyperglycemia leads to endothelial dysfunction
- Glucose affects structural proteins of vascular wall – abnormal intimal growth
- Inflammation
- Thrombus formation – platelet aggregation

Macrovascular Changes

- CAD & PAD (Akbari, et al., 2003)
- RR of PAD is 2-3 times higher in people with DM2 (Akbari, et al., 2003)
 - Quicker disease progression in people with DM2

Atherosclerosis
Microvascular Changes

- Consequences of hyperglycemia (Akbari, et al., 2003)
 - Changes in vascular permeability: increased diffusion distance
 - Impaired vascular tone due to damage to peripheral nerves
 - Abnormal production & response to nitric oxide
 - Hyperglycemia interferes with NO synthase (Alavi, et al., 2014)

Changes in Tissue Regeneration (Dinh, et al., 2005)

- Decreased secretion of growth factors
 - PDGF – platelet derived growth factor
 - Basic FGF – fibroblast growth factor
 - VEGF – vasoendothelial growth factor
- Delayed tissue repair
 - Marked decrease in collagen synthesis
 - Inhibition of keratinocyte proliferation
- Wound healing processes will depend on depth of wound – most DFUs tend to be full thickness

Healing in Partial Thickness Wounds

- Occurs by migration and proliferation
- New cells are produced at the lower layers of the epidermis and basement membrane
- As cells divide, they migrate across the surface of the wound to close the defect
- When new epidermal cells touch one another, cell division stops due to contact inhibition
Healing in Full Thickness Wounds

• Epidermis and dermis are no longer intact

• Wounds heal by CONTRACTION and SCAR TISSUE FORMATION

• When healed, full-thickness wounds LACK TENSILE STRENGTH
 • Only gain 60-70% of original skin turgor
 • Scar tissue increases risk of future breakdown

Overview of the Healing Cascade

• Inflammatory Phase
 • 4 to 6 days

• Proliferative Phase
 • 4 to 24 days

• Remodeling Phase
 • 21 days to 2 years

• PLEASE NOTE:
 • These times are estimates based on non-infected, partial thickness wounds in healthy individuals
 • Phases overlap
 • Wounds can revert to earlier phases if healing is disrupted by trauma and/ or comorbidities – DFUs tend to stagnate

Inflammatory Phase

• Begins immediately after injury

• Signs of ACUTE inflammation caused by tissue trauma and cellular injury include:
 • Swelling
 • Redness
 • Warmth
 • Tenderness

• Signs of inflammation can be suppressed in certain conditions and situations
 • EXAMPLES: steroid therapy, DM, older patients, immunocompromise
Histamine Reaction

- Occurs during the inflammatory phase

- Histamine
 - Chemical mediator released by injured mast cells
 - Causes vasodilation and increased capillary permeability
 - Allows delivery of leukocytes to the site of injury

Acute Phase of Open Wounds

- Hemostasis
 - Stops blood loss after vessels are damaged or ruptured
 1. Vascular spasm
 2. Platelet plug formation
 3. Coagulation/clot formation

Platelet Plug

- When the endothelium is damaged, collagen fibers are exposed

- **Platelets stick** to the exposed collagen at the site of the injury

- Adherence of platelets and leukocytes leads to "wallowing off" of the injury site
Inflammatory phase

- Necessary to “kick start” the healing cascade

- **Neutrophils increase capillary permeability**
 - Large plasma proteins leave the vascular bed and contribute to edema formation
 - WBCs release enzymes that facilitate autolytic debridement (i.e., body’s natural processes act to remove bacteria and dead tissue)

- As inflammation progresses, neutrophils decrease and macrophages increase

Inflammatory Phase

- Phagocytes remove debris and dead tissue

- Macrophages help transition to proliferative phase through release of growth factors & chemical mediators – attract fibroblasts to the area

Fibroblastic Activity

- Manufacture glycoproteins & mucopolysaccharides – GROUND SUBSTANCE

- Manufacture collagen

- Contribute to wound contraction
Proliferative Phase

- Formation of granulation tissue
- Migration of epithelial cells (requires a MOIST ENVIRONMENT)
- Exudate (i.e., moisture produced by the wound) contains growth factors which aid healing

Remodeling Phase

- Starts as granulation tissue is being formed
- May continue 1 to 2 years post-injury
- Body's attempt to normalize scar tissue
- Requires a balance between collagen formation and collagen lysis

Impact of DPN on Tissue Healing

(Alavi, et al., 2014)

- Delayed cell chemotaxis
 - Decreased leukocyte infiltration
 - Reduced migration of keratinocytes
- May contribute to imbalance in matrix metalloproteases (MMPs)
Infection
(Akbari, et al., 2003)

- Less apparent due to suppressed inflammatory response & impaired immunologic response (Alavi, et al., 2014)
- Higher glucose levels contribute to biofilms (Alavi, et al., 2014)
- Masked external signs can lead to high intracompartmental pressures
 - Further ischemia and tissue necrosis
- High potential for osteomyelitis

Functional Issues:
Changes in Gait and Balance
(Kanade, et al., 2008)

- DPN causes postural instability as well as altered biomechanics at the foot & ankle
- Further exacerbated by presence of DFUs, subsequent debridement and/ or amputation

GOAL: early detection saves life and limb

RISK ASSESSMENT AND PREVENTIVE MANAGEMENT
Risk Factors for DM2
(Klein, et al., 2004)

- Age ≥ 45 yrs
- Overweight: BMI > 25
- Family history
- Sedentary lifestyle
- Race/ethnicity (AA, Hispanics, AI/AN, Pacific Islanders)
- Impaired fasting glucose or glucose tolerance
- History of gestational DM or birth wt > 9 lbs
- HTN
- Elevated HDL and triglyceride level
- PCOS
- History of vascular dz

Risk Factors: Lack of Physical Activity

- 30% risk reduction in DM2 for regular PA (moderate intensity) as compared with sedentary behaviors (Jeon, et al., 2007)
 - Systematic review, focused on walking
 - Reduction significant, even after controlling for BMI

Risk Factors: Body Weight
(Klein, et al., 2004)

- Overweight/obesity:
 - Prevalence of DM2 is 3 to 7 times higher in obese adults
 - BMI > 35 increases risk of DM2 by 20 times compared to BMI between 18.5 and 24.9
 - Moderate wt loss (5% of body weight) can significantly improve glycemic control
 - May not be true in people with severe pancreatic dysfunction
Risk of DPN: Contributing Factors

- Fluctuations in glucose level
- Prolonged hyperglycemia
- Duration of DM
- Age
- Tobacco and/or alcohol use
- Patient height and gender

Diabetic (Neuropathic) Ulcers

Diabetic (Neuropathic) Ulcers
Key Causative Factors for DFUs
(Alavi, et al., 2014)

- Improper foot-wear
 - Time-pressure gradient
- Abnormal friction/shear during weight bearing activities
- Trauma – penetrating injuries

The Importance of Diagnostic Imaging

Prevention:
Routine Foot Exams
Visual Inspection

- Callus
 - Areas of increased local pressure
- Blisters – break in skin barrier
- Muscle imbalances and foot deformities
 - Claw toe / hammer toe
 - Hallux valgus / bunion
 - Charcot foot / integrity of MLA
 - Distal displacement of the sub-metatarsal fat pad (Bus, et al., 2005)

Visual Inspection

- Check presence of toe nail deformities / onychomycosis
- Check skin in between toes (Alavi, et al., 2014)
 - Fungal infections of skin very common (toes 4 & 5)
- Check for signs of autonomic skin changes

Onychomycosis

Plantar Pressures

• Mapping can identify abnormal pressure points
• Evaluation of callused areas
 • May also be assisted by use of diagnostic ultrasound and/or thermography to detect inflammatory changes beneath the callus (Nishido, et al., 2009)
• If no ulceration is present, pressure redistribution may be obtained with padded hosiery, liquid silicone injections, custom molded shoe inserts (Boulton, et al., 2004)

Foot Wear
(Cavanaugh, 2004)

• Improper footwear implicated in 21-76% of DFUs
 • Toe box
 • Narrow toe box – causative factor in DFUs at the medial and lateral border of the foot
 • Arch support
 • Pressure distribution during gait
 • Stiff footbed limits distribution of pressure

Soft Tissue and Joint Extensibility

• Glycosylation of collagen (Alavi, et al., 2014)
 • Restricted ROM
 — Primarily at subtalar and MTP joints (Dinh, et al., 2005)
 — Changes ability to adapt to ground surface, attenuate forces @ heel strike
 — Greater plantar pressures shifted to forefoot
 • Thickening of Achilles and plantar fascia
 — Equinus deformity
 — Early heel rise
 — Increased shear force during push off
Soft Tissue and Joint Extensibility

• 28% of variability in peak pressure at the great toe can be explained by ROM at first MTP (Payne, et al., 2001)

Screening for Loss of Protective Sensation

• Semmes-Weinstein monofilament testing
 • Inability to detect 5.07 SWM (10 g) has high correlation with risk of ulceration (Akbari, et al., 2003)
 • Some suggestion that smaller monofilament (4.31) has better sensitivity and specificity for detecting DPN (Kamei, et al., 2005)
 » Sensitivity = 60%, specificity = 73.8%; 5 – 30% increase in sensitivity over 5.07 SWM

• Vibratory perception: 128 Hz tuning fork
Screening for Motor Neuropathy

- DTRs – ankle jerk
- Wasting of intrinsic muscles
- Ankle mm strength

Circulatory Assessment

- Peripheral pulses (Alavi, et al., 2014)
 - Absence of DP – sensitivity = 50%, specificity = 73.1%, PPV = 17.7%
 - Palpable pulse does NOT rule out PAD in people with DM2 – possibility of arterial calcinosis
 - Arterial calcinosis leads to noncompressible peripheral arteries – artificially inflates BP at ankle
 - Toe-brachial pressure index (great toe) if feasible – more accurate in people with DM2 (Alavi, et al., 2014)

Circulatory Assessment

- Transcutaneous pressure of oxygen
 - Measures delivery of O2 to the epidermis
- Symptoms of PAD – e.g. – intermittent claudication
 - Rest pain may be absent in people with DM2 and PAD due to sensory neuropathy (Alavi, et al., 2014)
- Skin color
 - Pallor
 - Rubor of dependency
Gait Assessment
(Allet, et al., 2010)

• Changes in gait consistent with DPN
 • Lower velocity
 • Decreased cadence
 • Shorter stride length
 • Increased stance time
 • Higher step-to-step variability
 » Step width
 » Step time

• Fall history

Skin Temperatures
(Armstrong, et al., 2007)

• Use of dermal thermometry – results of RCT
 • Infrared skin thermometer used to measure risk sites on both feet
 • Patients instructed to contact WC provider if there was a temperature difference of > 4° F between feet
 • 3 fold decrease in likelihood of ulceration for thermometry group

Patient Education for Lifestyle Change

• Lifestyle interventions at least as effective as drug treatment for prevention of progression of glucose intolerance to DM2 (Gilles, et al., 2007)
 • Meta-analysis and systematic review

• Lifestyle change delayed onset of DM2 by 11 yrs, metformin by 3 years (Herman, et al., 2005)
 • Reduction in absolute incidence by 20% and 8%, respectively
 • Cost–effectiveness profile: $8800/ QALY for lifestyle change, $29,900/ QALY for metformin
 • Markov simulation model following 3 yr prospective trial
 • Lifestyle change = 16 lessons in diet, exercise, behavior modification, plus individual and group sessions
Glycemic Control

- Target HbA1C < 0.09 – 0.07 (Alavi, et al., 2014)
- Increased intake of dietary fiber (Carter, et al., 2010)
- Modified intake of simple carbohydrates (Carter, et al, 2010)
- May be improved by calcium and vitamin D supplementation (Pittas, et al., 2007)

Proper Nutrition: Vitamins Needed For Tissue Repair

- Vitamin E
 - Decreases inflammation
 - Enhances immune function
 - May play a role in preventing clots – reduced platelet adherence

- Vitamin C
 - Needed for collagen synthesis

- Vitamin A
 - Needed for collagen synthesis
 - Aids in granulation & epithelialization
 - May enhance macrophage function

Vitamins Needed for Tissue Repair

- Vitamin K
 - Needed for production of clotting factors

- B complex
 - Needed for proper function of WBCs
 - Contributes to tensile strength of healing wounds
Minerals Needed for Tissue Repair

• **Zinc**
 • Assists collagen formation & epithelialization
 • Supports normal immune function

• **Iron**
 • Needed for healthy RBCs, hemoglobin production, oxygen transport

• **Copper**
 • Also needed for hemoglobin synthesis
 • Helps increase tensile strength of wounds

• **Calcium**
 • Needed for fibrin synthesis and blood clotting

Other Nutritional Factors
(Carter, et al., 2010)

• Benefits of fruits and vegetables
 • Results of meta-analysis: 14% risk reduction for DM2 with greater intake of green leafy vegetables
 • Increased plasma concentrations of carotenoids and vitamin C may lower oxidative stress
 • Higher intake of magnesium associated with decreased incidence of DM2

Exercise/ Physical Activity

• Long-term exercise is associated with increases in skin perfusion for people with DM2 (Colberg, et al., 2002)
 • May stimulate release of NO
 • May enhance sensitivity to NO – improved vasoendothelial response
 • Improves glycemic control – potentiates glucose
 • Reduces hyperlipidemia
 • Exercise plus modest weight loss can decrease risk of DM2 by up to 58%
ACSM and ADA Guidelines for PA
(Colberg, et al., 2010)

• Prevention
 - At least 2.5 hrs of moderate to vigorous PA/week in high-risk adults

• Management
 - Pre-exercise medical evaluation - CV clearance
 - At least 2 hrs and 10 min moderate to vigorous PA/week, spread out over at least 3 days
 - No more than 2 days in between bouts
 - Moderate to vigorous resistive training at least 2 to 3 days/week
 - Maintain adequate hydration, monitor glucose levels

Exercise and PA Precautions
(Colberg, et al., 2010)

• People with DPN may do weight bearing exercises with proper foot wear and daily foot inspection

• People with CV issues require evaluation
 - Need to determine exercise threshold – e.g. – angina, cardiac autonomic neuropathy

• People with uncontrolled retinopathy may need to limit activities which can increase intraocular pressures

Effects of Smoking

• 1 cigarette can decrease local blood supply by up to 30% (Attinger, 2006)

• Effects last for 2-4 hrs following each cigarette (Attinger, 2006)
Socioeconomic Factors

(Agarth, et al., 2011)

• Risk of DM2 is higher for people of lower income status and educational attainment as compared with the general population
 • Systematic review and meta-analysis – global dataset
 • 30-40% difference in incidence for low vs high income groups

• Causal relationship needs further investigation
 • Access to health services
 • Access to health information/ literacy
 • Opportunities for healthy nutrition & physical activity
 • Confounding variables: higher rates of obesity & sedentary behaviors in people with lower SES

Screening Tools

• Laboratory testing – glucose, HbA1c
 • Total triglycerides
 • Low HDL levels, high LDL levels
 • BP

• Michigan Neuropathy Screening Instrument (MNSI)

MNSI

• Part I – history – survey completed by patient
 • Screens for risk factors
 = Numness
 = Paresthesias
 = Previous h/o ulceration/amputation
 = Higher scores indicate higher risk of neuropathic ulcer

• Part II – physical assessment
 • Appearance of feet, presence of ulceration
 • DTRs at ankle
 • Vibratory perception at ankle (128 Hz tuning fork) – DIP, great toe
 • Monofilament testing

Patient Education

(Apelqvist, et al, 2000)

• Self-checks

• Proper footwear
 • Should not walk barefooted
 • Check inside of shoes (visually and with palpation) prior to donning
 • Inside of shoe should be 1-2 cm longer than foot
 • Check toe box
 • Prescription shoes or orthoses, if visible signs of abnormal loading (i.e. – calluses, foot deformities, hyperemia)

Patient Education

(Apelqvist, et al., 2000)

• Proper foot care
 • Washing with mild soap and temperate water
 • Careful drying, especially between toes
 • Use of emollients on soles of feet, but not between toes
 • Change socks daily – no seams, or seams inside out
 • Patients should not cut their own toenails, or remove calluses
 • Notify healthcare provider immediately if any lesions or blisters are noticed

Widespread Preventive Measures

(Alberti, et al., 2007)

• Advocacy
 • Access and reimbursement
 • Promoting cost-effectiveness of preventive mgmt
 • Public policy
 • Food labeling, pricing, advertising

• Community-based campaigns
 • Early childhood education
 • Urban design – spaces and opportunities for PA
 • Work-based health promotion initiatives
Assessment and Treatment
DIABETIC FOOT ULCERS

Treatment of DFUs
• Local wound care
• Pressure relief
 • Modified weight bearing
 • Mechanical unloading or pressure redistribution
 – TCC
 – Temporary footwear
 – Molded insoles
• Restoration of skin perfusion
• Treatment of infection
• Glycemic control
• Patient education

Taking a Patient History
• First step in the assessment process
• GOALS:
 – Determine wound etiology
 – Identify facilitators and barriers to wound healing
 – Review past and present treatment of the wound and results
Characteristics of Diabetic Ulcers

- Located at plantar aspect of foot: midfoot, heel, metatarsal heads
- Can sometimes occur in between toes & at dorsum of toes (IP joints)
- If patient has hallux valgus, increased risk of ulceration at medial aspect of great toe (1st MTP joint/ "bunion")
- Wound margins often show callus formation
- Wounds are usually round shape
- Minimal drainage
- Generally painless or with minimal pain due to sensory neuropathy
- Patient may be unaware of cause of wound – cannot identify precipitating incident

Physical Exam

- Systems Review – cardiovascular and pulmonary, musculoskeletal (strength, ROM, mobility, gait, transfers, balance)

 - Appearance of wound –
 - Size
 - Shape
 - Color (wound base)
 - Odor
 - Drainage (exudate)

 - Appearance of surrounding skin, hair and nails
 - Trophic changes due to aging and/or vascular impairments
 - Hydration, turgor, elasticity
 - Edema – presence and degree

- Circulation
 - peripheral pulses
 - skin temp
 - capillary refill
 - ABI
 - Transcutaneous oxygen level
 ABI: Ankle Brachial Index

Transcutaneous Oxygen (tcPO$_2$)

- Measurements not reliable in patients with swelling or infection
- TcPO$_2$ less than 20 mm Hg – wound will not heal
- Greater than 30 mm Hg, wound should heal, safe for debridement

Physical Exam, cont’d

- Sensory Testing – Semmes-Weinstein monofilaments
- Anthropometric testing – body weight, BMI, body composition
- Measurement of edema – girth, volume, pitting/ non-pitting
- Presence and degree of pain
Wound Examination

- Assess wound bed
 - Amount of granulation tissue
 - Presence of debris and/or necrotic tissue

- Presence of exudate (drainage)
 - Color
 - Odor
 - Amount
 - Consistency
Granulation Tissue

Wound Examination

- Assess wound margins
 - Undermining
 - Tunneling
 - Sinus formation
 - Epiboly
 - Discoloration, maceration, callus formation, induration

WOUND MEASUREMENT
Wound Measurement

- **Surface area** – length X width (approximate)
- **Wound depth** – at deepest region
- **Clock method** – document location and measurement of undermining
 - 12:00 usually corresponds to patient’s head
 - 3:00
 - 6:00
 - 9:00
- **Planimetry** – wound tracing (sterile film)
- **Photography**
 - Not digital
 - Include reference for scale (ruler)
 - Obtain consent
- ***ALWAYS CLEAN BEFORE MEASURING

Wound Depth

- **Exposed bone** – or probe touches bone
 - 85% chance of osteomyelitis (Attinger, 2006)
 - Pt should be referred for radiographic evaluation
- **Exposed tendon** (Attinger, 2006)
 - Risk of infection tracking along sheath (Attinger, 2006)
 - Check length of tendon for bogginess and signs of inflammation/ purulence

Wound Measurement and Prognosis

- Change in wound dimensions ≥ 10-15% per week represents normal healing (Attinger, 2006)
Prognostic Factors in DFUs
(Lavery, et al., 1996)

- Failure to heal is associated with
 - Increased depth
 - Increased severity of infection
 - Presence of ischemia (PVD)

Prognostic Factors

- Diabetic Ulcer Severity Score: (Beckert, et al., 2006)
 4 clinically defined parameters
 - Presence of pedal pulses (no = 0, yes = 1)
 - Probing to the bone (no = 0, yes = 1)
 - Site of ulceration (toe = 0, foot = 1)
 - Multiple ulcerations (0 = no, 1 = yes)

- Lower scores, greater probability of closure
- 1 point increase in score decreases healing by 35%

Prognostic Factors

- Wound severity
 - Megitt-Wagner Scale
 - Criticized for not including comorbidities, i.e. – ischemia, pressure load
 - University of Texas System
 - Includes ischemia and infection

- These classification systems are primarily designed for categorization, not prognosis
Prognostic Factors: Presence of Infection

(Lavery, et al., 1996)

- Local signs – may be suppressed due to DPN and/or immunopathy
 - Purulence
 - Warmth
 - Erythema
 - Edema
 - Pain
 - Loss of function
 - Lymphadenopathy

- Systemic signs
 - Fever
 - Chills
 - Malaise
 - Nausea & vomiting

Evaluating Presence of Infection

(Akbari, et al., 2003)

- Hyperglycemia

- High potential for osteomyelitis
 - Radiographs, bone scans, CT scans, MRI
 - Bone biopsy
 - Use of a sterile probe to detect bone in an open ulcer:
 PPV = 90%

PRINCIPLES OF WOUND MANAGEMENT

Promoting a Healthy Wound Bed
Reasons for Delayed Closure
(Attinger, 2006)

- Decreased blood volume (reduced circulation)
- Inadequate pain control
 - Pain can stimulate autonomic responses – vasoconstriction, decrease blood flow and tissue perfusion
- Long-standing ulcers have an increased risk of malignant changes

Reasons for Delayed Closure
(Attinger, 2006)

- Iatrogenic wound chronicity
 - Use of caustic topical agents
 - Hydrogen peroxide
 - 10% iodine
 - Dakin's solution
 - Repeated trauma during dressing changes
 - Use of inappropriate dressing – lack of optimal moisture balance
- Chronic wounds are susceptible to infection (Beasley, 2004)
 - Repeated exposure and handling of wound site
 - Prevalence of MRSA in health care settings

Wound Bed Preparation
(Ayello, 2004)

- Decreasing bacterial load
- Managing exudate
 - Promoting moisture balance
- Removing necrotic tissue and debris
Wound Contamination vs Wound Infection

Development of infection depends on:

- Total bacterial count
- Type of species present - virulence
- Number of different species present – synergistic interaction
- Immune response of host

Bacterial Burden

Contamination - Infection Continuum

Biofilm

Biofilm formation:

Attachment Colonization Growth
Biofilm

• Communities of aggregate bacteria imbedded in a self-secreted extracellular matrix

• Become more complex as they mature and may include channels for transport of water, nutrients and waste

Biofilm

• Increases bacterial resistance:
 – forms a diffusion barrier,
 – reduces effectiveness of antibiotics
 – interferes with action of phagocytic cells

• Mechanical barrier to wound closure

Biofilms and Wound Treatment

• Removal of film may be assisted by:
 • enzymatic debriders
 • low frequency non-contact US

• Erythromycin
WOUND BED PREPARATION

Wound Cleansing

- At initial assessment & each dressing change
- Clean without irritating, exacerbating or traumatizing wound
- NO HARSH CHEMICALS!!!!
- Normal saline, sterile water

Topical Agents & Wound Cleansing

- Antiseptics – may assist in early wound cleansing, but can later impede healing
- Common cytotoxic agents include:
 - Hydrogen peroxide
 - Chlorazine
 - Iodine
 - Alcohol
 - Hypochlorite
 - Acetic acid
WOUND IRRIGATION

Wound Irrigation Methods

- Bulb syringe
- Water pik
- Shower
- Spray bottle
- Pulsed lavage
- Normal saline is most commonly used irrigant
Pulsed Lavage

- AKA pulsatile irrigation; with or without suction
- Safe, effective irrigation pressure is between 4 and 15 psi
- Cleanses surface debris and reduces bacterial load
- Promotes granulation and epithelialization
- Associated with decreased length of stay
- Decreased risk of cross-contamination

WOUND DEBRIDEMENT

Purpose of Debridement

(Attinger, 2006)

- Necrotic tissue and debris in wound bed impede healing
- Debris can stimulate production of metalloproteases
- MMPs destroy and prevent formation of new tissue
- MMPs may encourage proliferation of bacteria
 - Biofilms
 - Bacteria can produce wound inhibiting enzymes
 - Bacteria use scarce resources
 - Oxygen supply
 - Nutrients

Debridement Methods

- Selective vs Non-selective debridement
- Mechanical Debridement
- Autolytic Debridement
- Enzymatic Debridement
- Sharp Debridement
- Biological Debridement

Enzymatic Debridement

- Proteolytics
 - Papain
 - Papain/urea – combination is twice as effective
 - Examples: acizyme, ethzyme
 - Can be combined with chlorophyllin copper
 - Examples: panafit, Gladase-C
- Fibrinolytics
 - Elase
 - Trasase
- Collagenases
 - Santyl
Enzymatic Debridement

• Contraindicated in wounds with exposed tendons, ligaments, joint capsule, blood vessels, nerves, bone

• Papain and copper – inactivated by exposure to silver ions \(\text{[Attinger, 2006]}\)
 - Do not use with silver dressings or other silver-containing topical agents

Biological Debridement

• The use of sterile maggots to remove necrotic tissue

Advantages of Biological Debridement

• Maggots will not damage healthy tissue

• Maggots secrete enzymes which liquify necrotic tissue, fight infection and stimulate healing

• Necrosis and bacteria are ingested by maggots and maggots are disposed
 - May work well with bacteria resistant to antibiotics, e.g. – MRSA, VRE \(\text{[Attinger, 2006]}\)

• 30 maggots can consume approximately 1 g of necrotic tissue per day \(\text{[Attinger, 2006]}\)
Advantages, cont’d

- Maggots excrete ammonia and salts and help maintain an alkaline wound pH which facilitates action of collagenases
- Excretion also contains urea – stimulates granulation
- Excretion may also contain cytokines

Disadvantages

“Free Range” Maggots & Dressing

Maggots Therapy. Fleishmann, Grassberger and Sherman, p. 33
Biobag System

Maggot Therapy. Fleischmann, Grassberger and Sherman. p. 34

Biobag

- New advance – maggots are encased in a commercial dressing: sponge netting and small cube of spacer material
- Maggots feed through the dressing and secretions reach the wound
- No mechanical irritation of wound edges by the maggots
- No risk of escape

Debridement Guidelines

- Dry gangrene
 - If wound is stable, no debridement until ischemia has been addressed
 - Monitor for signs of infection/transition to wet gangrene
 - Keep area dry and protected – avoid compression/elevation

- Sharp debridement
 - Must check state practice act/legal guidelines
 - Should be followed by pulsed lavage to remove remaining debris and surface bacteria
Choice of Dressing

- Control infection
- Provide protection
- Encourage moist wound healing

Rationale for Moist Wound Healing

- Promotes progression of healing cascade
- Retains growth factors
- Promotes autolytic debridement (self-cleansing of wound)
 - Retention of moisture allows body to liquify necrotic tissue
 - Can be assisted by use of occlusive or semi-occlusive dressings
- Supports current of injury
Current of Injury

- Human skin acts as a battery
- Intact epidermis has a (-) charge
- Exposure of underlying tissue layers give open wounds a (+) charge
- A voltage gradient exists between the intact skin (-) and the wound (+)
- Voltage difference results in the current of injury

Current of Injury

\[(-) \rightarrow (+) \rightarrow (-) \]

(+) (++)

Current of Injury

- Current stimulates proper healing mechanisms
 - May help attract cells needed for repair - galvanotaxis
- Magnitude of current is approximately 1mA for each millimeter of wounded epidermis
- Current of injury decreases as wound size decreases
Primary vs Secondary Dressing

- **Primary dressing**
 - Comes in direct contact with wound bed
 - Can be used as a carrier for topical agents, e.g. — hydrogel plus gauze
 - Can be used as a filler for dead space – ensures that wound closes from base to surface

Primary vs Secondary Dressing

- **Secondary dressing**
 - Not required in all instances
 - Used when adhesives are required to hold dressing in place
 - Used when additional compression, padding or thermal insulation is desirable
 - Used when a moist dressing or topical agent is placed at the wound bed – protects bedding and clothing from transfer of moisture
 - E.g. — alginate as a primary dressing with semipermeable film as a secondary dressing; adaptic (inert gauze) used as a primary dressing with dry gauze as a secondary dressing
General Guidelines – Tissue Type

• Exposed tendons/joint capsule
 • Must be kept moist to maintain viability

• Exposed nerves
 • Must be kept moist to maintain viability
 • Should be padded to reduce potential for external compression/damage

• Exposed fascia
 • Must be kept moist to maintain viability

• Avoid materials which can adhere or leave behind fibrous residue

Types of Dressings

• Dry, protective – plain gauze
• Inert
• Moisture retentive
• Absorbent
• Moisture added (hydrative)
• Compressive garments (remodeling, edema)
• Controlling odor – charcoal dressings
• Controlling infection – topical antibiotics, silver impregnated dressings

Inert Dressings

• Petrolatum gauze
 • Petroleum or paraffin
 • Need to be changed frequently
 • Require a secondary dressing
 • E.G. – xeroform

• Emulsified gauze
 • Contain oil or silicone
 • E.G. – adaptic, aquaphor
Inert Dressing

- Semipermeable – O2 in, CO2 and water vapor out
- Transparent
- Nonabsorbent
- Elastic and extensible
- Promotes autolytic debridement
- Impermeable to bacteria and contaminants
- Can be used as a secondary dressing with hydrogels and alginates
- Not recommended in deep cavity wounds or full thickness wounds
- Must be discontinued if wound is too moist (maceration) or infection present
- Can remain in place for 1 week – change sooner as needed

Film Dressings

- Suresite, Blisterfilm, Opsite, Cutifilm, Transeal, Polyskin, Bioclude...
Foam Dressings

- Absorbent
- Used in moderate to heavily draining wounds
- Cushion and protect
- Provide thermal insulation
- Promote autolytic debridement
 - May be used with hydrogel
- Can come with charcoal to control odor
- Change every 1 to 4 days, 7 days max
- Change every day if wound is infected
- Will not protect periwound skin from maceration – may need a topical agent
- Use alternate dressing if exudate soaks through in less than 24 hrs (strike-through)
- E.G. – hydrasorb, allevyn, curafoam, polyderm, mitraflex, lyofoam

Hydrogels

- Hydrative – add moisture
- Amorphous gels – used to fill cavities
- Can also come as a thin, flexible sheet
- Non adherent
- Assist autolytic debridement
- Can stay in clean wound up to 3 d – remove gel by flushing with sterile water or saline
- No sheet hydrogels in infected wounds***
- E.G. – Carasyn, Intrasite, Curagel, Elastogel, Saf-Gel
Hydrogels

- Amorphous
- Sheet
- Tagaef

Hydrocolloids

- Somewhat absorbent – slow rate – not for bleeding wounds
- Gel forming polymer
- Also available as powder, granules and paste
- Provide thermal insulation
- Occlusive – not for use in infected wounds
- Change every 5 to 7 days, sooner if strike-through
- Dressing can leave a foul smell – do not confuse with infection
- E.G. – duoderm, comfeel, tegasorb
Alginates

- Absorbent
- Look like felt – made from seaweed
- Exchange Ca++ ions from dressing for sodium ions in wound
- Can control bleeding
- Can be used in infected wounds, nonocclusive
- Do not premoisten
- Require secondary dressing (film)
- Do not use on exposed tendon, bone or joint capsule
- D/C if not enough exudate to saturate dressing
- Change daily if infected, no more than 7 days, sooner if saturated
- E.G. – algoderm, curosorb, kalostat, caloflex, sorbsan, kalgnite, calgicare, kutinova

Sheets or roping for packing wound

Hydroactive Dressings

- Absorb but do not form a gel
- Good for use over joints
- Can stay in place up to 7 days
- Do not use on infected or dry wounds
- E.G. – Cutinova, Biotane
Hydroactive Dressings

Cutinova – Smith & Nephew
Tielle – Johnson & Johnson

Controlling Odor

- Cadexomer iodine (not the same as betadine)
 - Screen for allergies
 - Not for use in patients with thyroid dz
 - Powder, paste or sheet
 - Initially brown, but turns white when interacting with exudate
 - Do not use in patients under 12 y.o.
 - No more than 50g at a time, 150 g per week
- Charcoal

Silver Dressings

- Broad spectrum anti-microbial properties: bacteria, fungi and viruses
 - Can be used in MRSA/VRE (debrid, 2006)
- Inhibit oxidative enzymes and interferes with bacterial replication
- Silver ions bind to bacterial cell membranes and induce apoptosis

http://www.allegromedical.com/images/products/acticoat7-2.gif
Silver Dressings

- Concern for developing silver-resistant bacteria
 - Not supported by existing evidence (Attinger, 2006; Percival, 2005)

- Can be costly (approx $35 per 4X4 sheet)
 - Sustained release – less frequent dressing changes
 - Silver can be released over 7 days (Qin, 2005)

- Should not be used prophylactically
 - Only in infected wounds
 - May inhibit keratinocytes as shown in culture (Attinger, 2006)

Use of Honey in Wound Healing

- Dates back to ancient Greece and Egypt
- Seen in Ayurvedic medicine
- Described in the Koran, Bible and Torah

Therapeutic Honey

- Raw – no heat treatment like culinary honeys
 - Heat reduces antibacterial action - destroys enzyme responsible for production of hydrogen peroxide (Glucose oxidase)

- Sterilization by gamma irradiation

- Examples (derived from tea trees):
 - Medihoney (Australia)
 - Active Manuka Honey (New Zealand)
Properties of Honey

- Production of hydrogen peroxide – slow, low level inhibits bacteria without damaging tissue
 - Hydrogen peroxide also aids debridement
 - Amount of hydrogen peroxide ~100X lower than in typical rinse

- High sugar content and acidic pH inhibits growth of pathogens

- Promotes moist wound environment

Effects of Honey

(Pieper, 2009)

- Reduces infection – decreased risk of antibiotic resistance
- Alleviates pain
- Controls odor
- Reduces necrotic tissue
- Speeds granulation & re-epithelialization
- Minimizes scarring
- Improves uptake of skin grafts
- Non-adherent
Topical Agents

• Silver sulfadiazine
 • Silvadene, adventis
 • Broad-spectrum antimicrobial
 • Screen patients for sulfa allergies prior to use ([Oregon, 2006])

• OTC antibacterials
 • Bacitracin, neosporin
 • Can result in contact dermatitis, possible proliferation of pseudomonas
 • Not for use in deep or long-standing chronic wounds ([Oregon, 2006])

• Topical growth factors

Topical Growth Factors
Challenges to Use

• High cost ($400/ tube)

• Chronic wound environment –
 • Increased levels of proteases may impair function of topical growth factors

• Topically applied factors may not reach intended target
 • only 1-9% of applied dose reached depth of 1 to 3 mm

Challenges to Use

• May have mitogenic properties – malignancy?

• May increase risk of hypertrophic scarring, e.g. – FGF?

• Growth factor timing and delivery
 • May be possible to use gene transfer for improved delivery

• Use of isolated factors not as effective as synergistic action, delivery in combination
Treatment of Infection

- Deep infections require I & D (Akbari, 2003)
 - Prevents microbes from spreading along fascial planes
 - Usually done from plantar aspect (dependent drainage)

Treatment of Osteomyelitis

- Surgical debridement and 4-6 week course of antibiotics (Akbari, et al., 2003)
 - Antibiotic Rx may be shorter if affected bone has been surgically removed (e.g. – digital or transmetatarsal amputation)

Pressure Relief

- TCC considered the reference standard for off-loading the foot
 - Healing rates of 72-100% over 5 to 7 weeks for non-infected, non-ischemic plantar DFUs (Armstrong, et al., 2004)
Pressure Relief
(Armstrong, et al., 2004)

• TCC – decreases pressures at the forefoot
 • May ensure patient compliance

 – Potential drawbacks
 • Cast should not be allowed to get wet
 • May interfere with seep
 • Can exacerbate postural abnormalities and unstable gait
 • Cannot visibly inspect dressing or wound

Total Contact Casting

• Cast should be changed at least once every week, or at maximum, every 2 weeks

• Disadvantages:
 • Need for expertise in application
 • Use of time and monetary resources
 • Inability to examine wound daily (window?)

• Contraindications:
 • Significant PVD
 • Infected wounds
 • Osteomyelitis
Pressure Relief

- Half shoe
 - Less effective in pressure redistribution than TCC or RCW (Armstrong, et al, 2004)

- Rocker bottom cast shoe

Pressure Relief

- RCW – removable cast walker

Comparison of bivalved TCC, custom molded insole (CMI), softcast shoe with molded insole (MABAL), and prefabricated pneumatic walker

Beuker, et al., 2005
Novel Approaches to Pressure Redistribution

- Liquid silicone injected under high pressure areas
- May help replace fat padding that is displaced by bony deformities, e.g. – claw toes, charcot foot
- May reduce callus formation
- Benefits maintained at 12 month follow-up

Use of Adjunctive Modalities

Negative Pressure Wound Therapy
Use of Adjunctive Modalities:
Negative Pressure Wound Therapy

• Aka – wound VAC (vacuum assisted closure)

• Decreased resource utilization (Apelqvist, et al., 2008)
 • Less dressing changes
 • Less surgical procedures
 • Lower cost of healing overall
 → $25,954 to total closure for NPWT group vs $38,806 for usual standard of care

Benefits of Negative Pressure Wound Therapy
(Greene, 2006)

• Increases healing rates
 • Applied stretch increases mitotic rate of keratinocytes
 • Promotes wound contraction

• Facilitates removal of exudates (Attinger, 2006)
 • Promotes fluid balance
 • Decreases bacterial load

• Increases blood flow, reduces ischemia

• Stimulates production of VEGF

• Reduces inflammation, decreases edema and shortens distance for diffusion

• Limits cyclic ischemia-reperfusion

Electrical Stimulation

http://www.medicaledu.com/images/ksb.jpg
Electrical Stimulation

- May augment or restore current of injury
- May inhibit growth of bacteria
- May promote galvanotaxis of cells needed for tissue repair

Use of Adjunctive Modalities: Electrical Stimulation

- Sensory level asymmetrical biphasic pulsed current increased healing rates of DFUs by 60% compared with controls (Baker, et al., 1997)
- Nocturnal stimulation (HVPC 50V, 8 & 80 pps, 10 min cycles) using a stocking electrode showed faster rates of closure (Peters, et al., 1998)

Low Intensity Non-Contact US

Low Frequency Ultrasound

- MIST therapy by Celleration
- Has been shown to increase angiogenesis & collagen deposition in diabetic mice
- Can reduce bacteria and biofilm
- May enhance formation and/or release of nitric oxide (NO): NO plays role in formation VEGF and angiogenesis

Use of Adjunctive Modalities:
Low-Frequency Non-Contact Ultrasound

- Accelerated healing noted in patients with chronic ulcers (65% of sample with DFUs) – mean difference in rate of closure was 9.8 weeks (Kavros & Schenck, 2007)
- Fewer complications or need for hospitalization and a mean difference in rate of closure of 3 weeks in patients with chronic ulcers, including DFUs (Ennis, et al., 2006)
Use of Phototherapy

Red and Infrared Light

Effects of Laser and Low Intensity Light Therapy

- Increased growth factor production
- Increased cellular metabolism:
 - Increased light absorption by mitochondria
 - Increased rate of cell division
 - Increased rate of DNA/RNA synthesis
 - Increased rate of fibroblastic activity

Use of Adjunctive Modalities:
Low Intensity Light Therapy (LILT)

- Use of red light (653 nm, 2.35 J/cm²) increased healing by 38.5% in animal models with experimental diabetic wounds (Al-Watban, 2009)

- Use of red light (632.8 nm, 5 J/cm²) increased proliferation of fibroblasts and expression of cytokines in vitro (Houweld & Abrahamse, 2007)
• Accelerated wound closure in diabetic ulcers
• Increased angiogenesis/vascular density
• May increase fibroblast growth factor-2 (FGF-2)