Equine Aquatic Therapy

Steve Adair MS, DVM, DACVS,
DACVSMR
University of Tennessee Veterinary
Medical Center

Claims

• Reduced weight bearing of 40-100%
• Reduced impact on limbs
• Soft tissue mobilization
• Modulation and reduction of pain
• Joint decompression
• Reduction of friction between articulating joints
• Hydrostatic pressure to assist blood and reduce swelling

Claims

• Reduced recovery time by 50-60%
• Improved performance
• Accelerated conditioning
• Encourages muscle development
• Increases cardiovascular fitness
• Improves flexibility
• Promotes correct posture and a balanced gait
• Minimizes performance injuries
Aquatic Therapy

- Buoyancy effects – 0 to 100%
 - Reduced weight bearing > Increased mobility
- Hydrostatic pressure
 - Increased pressure on skin > Stimulate mechanoreceptors > Reduced pain
- Viscosity
 - Increased resistance > Increase strength and endurance
 - Increased sensory awareness
- Thermal effects
 - Heat > Vasodilatation
 - Increased BP > Increased circulation

Buoyancy

- Unweighting tendons or joints within the distal limb
- Reduced ground reaction forces – reduced concussive stresses on joints and tendons
- Allows exercise without further trauma induced by weight bearing or concussive forces
- Reduced body weight decreases postoperative and convalescent complications
- Reduces contralateral limb complications, such as laminitis associated with increased compensatory weight bearing

Olecranon
10.5% (± 1.8) weight reduction

Distance: Above Olecranon
31.3% (± 2.4) weight reduction

Distance: Olecranon to Withers
53.8% (± 3.4) weight reduction
Distance: Below Withers

75.2% (± 2.0) weight reduction

Distance: 4-6 cm Over Withers

100% weight reduction

Hydrostatic Pressure

- Immersion causes water displacement and increased hydrostatic pressure
- Redistribution of blood flow from the peripheral limbs into the intrathoracic circulation
- Increased circulating plasma volume via fluid through the capillary walls
- Decreased hemoglobin and hematocrit level within 25-60 minutes of water immersion in humans

Viscosity

- Viscosity — Resistance of a fluid to motion
 - Low viscosity with slow movement
 - Increased resistance at higher speeds
 - Due to increased turbulence and drag
- Turbulence — Irregular flow
- Forms wakes and eddies
- Hydrojets
 - Aerate water
 - Provide increased drag or resistance on limb motion

Mechanical Massage

- Primarily effects of Hydrojets on limbs and body surfaces

Water Temperature

- Maximize comfort
 - For active exercise and swimming — 65° to 75° F
 - Less vigorous exercise — 90° to 104° F
- The least adverse physiologic effects occur at 97° F
- UT — 82° F
Water Temperature

- Minimize Homeostatic stress
- Changes in blood constituents were less at 99° to 104°F
 - Than immersion in 104° to 109° F or in 109° to 113° F
- Increased water temperature causes increasing peripheral circulation and perspiration
- Responses induced by cold are mainly due to increased sympathetic nervous activity

Mechanisms of Action

- Minimal controlled data is available to document the benefits of aquatic exercise
 - Buoyancy
 - Reduced pain
 - Flexibility
 - Motor learning
 - Resistance – Strength, conditioning
 - Cardiovascular effects
 - Mechanical massage

Reduced Pain

- Reduced joint loading
- Exercise effects on reducing pain
- Increased range of joint motion
- Thermal effects – hot or cold
- Mechanical massage
Flexibility – Range of Joint Motion

- Increased range of joint motion in both fore and hind limbs
 - Re-establishment of joint range of motion after joint surgery is a significant contributor to return to function
- In dogs, increased flexion and ROM during swimming compared to walking in both normal and operated stifle joints post-CCL surgery
 - The increased ROM was due to increased joint flexion
 - Ground treadmill walking produces greater stifle extension than swimming

Joint Flexion/Height & Water Height

- Height of water will effect degree of joint flexion
- May be used to target specific joints
- Once level of carpus is reached joint flexion and limb height very little

Hoof Level Carpal Level
Motor Learning

• Underwater Treadmill
 – Produces controlled exercise
 – Produces a symmetrical gait
 – May reduce gait abnormalities of high-speed treadmill due to slower and more controlled speed
 – Differences in passive gait associated with treadmill versus over-ground locomotion

• Swimming
 – Uncoupling of respiratory cycle and limb patterns during swimming

Normalized Gait Patterns

• In dogs, post-CCL surgery
 – Higher peak vertical forces and vertical impulses 6 months after surgery, compared to no rehabilitation

Muscle Development

• 18 two-year old TB’s, over 5 months of race training
 – A – Walk, trot, canter, gallop only
 – B – Running plus incrementally increased swimming
 – C – Running plus constant level of swimming

• Race training group
 – No significant changes

• Swimming groups
 – Fast twitch, high oxidative fibers increased
 – Increased aerobic capacity of muscles
 – Fast twitch, low oxidative fibers decreased
 – No change in slow twitch fibers

Training – Musculoskeletal Injuries

- A race training program that includes swimming
 - Improvement in performance capacity
 - Reduced locomotor disease (tendonitis) in 2-year-olds in training
 - Allow for a smooth progress in future training
- Incidence of musculoskeletal injuries
 - Five of 8 (62%) (that were recurrent) with race training only
 - One of 8 (12%) with race training and progressive swimming exercise

Strength – Resistance Training

- Water density is 12 times greater than air
 - Increased resistance to limb or body movement
- Increased energy costs compared to walking at similar speeds on land
- Maintenance of muscle development and muscle tone due to working against resistance
- Provides better balance of muscle groups working against increased resistance while maintaining a symmetrical gait

Autonomic Nervous System Effects

- Immersion bath in humans
 - Decreased vasomotor tone
 - Reduced cardiac sympathetic activity
- Immersion in warm spring water in horses
 - Increase in parasympathetic (vagal) activity may provide a means of relaxation

Cardiovascular Effects

- Aerobic exercise helps develop cardiovascular fitness
- Heart rates
 - Increased up to 130-180 beats/min
 - Lower heart rates than during ground exercise
- Increased mean arterial pressure
 - Changes in blood pressure by immersion are not uniform

Cardiovascular Effects

- Decreased systemic vascular resistance
- Changes in total peripheral resistance dependent on water temperature
- Increased cardiovascular benefits while working at slower speeds
- No relationship between heart rate and duration of swimming
- Stimulate cardiovascular function with reduced weight bearing and stress on limbs

Galloux P, et al. The Equine Athlete 1994; 7: 10-14

Hematology

- Blood lactate levels
 - Increased up to 3.8 mmol/l
 - Average increase 1.3 mmol/l
 - Normal 0.4 mmol/l
- Hematocrit
 - Increased up to 57% in horses (normal 42%)
 - Decreased 4% in humans

Galloux P, et al. The Equine Athlete 1994; 7: 10-14
Respiratory Function - Swimming

- Water pressure on the horse’s body during swimming prevents adequate ventilation
 - Alteration in lung volume > Increased intrapulmonary pressure > Altered lung mechanics > Altered pulmonary circulation and tissue volume > Changes in regional lung perfusion > Pulmonary air trapping (emphysema)

Respiratory Function - Swimming

- Respiratory rate
 - Increased up to 30/min (normal – 10/min)
 - Cool down: 50-60/min
 - Locomotion on dry land: 100/min
- Inspiratory pressure
 - Increased up to 4.5 kPa (normal 0.5 kPa)
- Expiratory pressure
 - Increased up to 5.1 kPa (normal 0.5 kPa)
- Ventilation
 - Duty ration (time inspiration/expiration):
 - No change at 0.33; expiration is twice as long as inspiration
 - Cool down at 0.5
 - Land exercise at 0.5

Respiratory Function - Swimming

- Venous and arterial blood gases
 - pHa – Reduced to pH 7.28 (normal 7.36)
 - PaO2 – Reduced to 90 (normal 114)
 - PaCO2 – increased to 51 (normal 41)
- Pulmonary arterial temperature
 - Increased to 39.0º C (normal 37.5º C)
- Water immersion can cause airway closure during tidal breathing
 - Low ventilation-perfusion ratios
 - Hypoxemia

Aquatic Therapy for Horses

- Underwater treadmill
- Swimming

Safety Considerations

- Horses are not natural swimmers
 - May panic and attempt to climb/jump out of the unit
 - Often cannot breathe or swim efficiently (swimming)
 - Induce excessive lordosis, which may induce back pain or muscle soreness (swimming)
 - Stifle injuries due to exaggerated kicking motion (swimming)
 - Drowning (swimming)
- Reconditioning of muscles or cardiovascular or mental status prior to full skeletal recovery
 - Increased risk of over-eager horses that produce more forces than bones, joints, ligaments or tendons can withstand
 - Increased risk of catastrophic musculoskeletal injuries 30-60 days after return to work if only work in water
 - Transient osteoporosis

Rehabilitation Goals

- Decrease pain
- Reduce lameness
- Reduce joint effusion
- Improve coordination, balance & core stability
 - Muscle re-education
- Restore joint mobility
- Increase limb strength
- Improve endurance
Underwater Treadmill

Underwater Treadmill Exercise

• Uses
 – Hydrotherapy
 – Rehabilitation
 – Conditioning
• Combined effects
 – Treadmill
 – Swimming pool
 – Whirlpool

Indications UW Treadmill

• Rehabilitation after injury or surgery
• Tendon injuries
 – Suspensory desmitis, etc
• Post-arthroscopic surgery
 – Replacement for hand walking
• Non-displaced fractures
• Joint stiffness, osteoarthritis
• Increase in muscle development
 – Encourages symmetric gait and back development
• Cardiovascular conditioning
 – Reconditioning after a lay-up
Contraindications – UW Treadmill

- Acute joint inflammation
- Skin infections
- Open wounds
- Upper limb lameness – Made worse with swimming
- Acute myositis
- Cardiovascular compromise
- Respiratory disease

Protocol Variables

- Injury and condition of patient
- Water level (above ground units)
 - Amount of buoyancy and limb weight bearing
 - Degree of joint flexion desired
- Water temperature
- Warm versus cold
- Treadmill speed
- Hydrojets – On or off
- Warm up period
- Duration of exercise – 5-20 minutes
- Cool down period
- Exertion during exercise
- Frequency of exercise

Initial Assessment

- Gait and performance evaluation
 - Straight and circle
 - Ground surface – hard, soft, deep, shallow
 - Walk, trot, canter, gallop
 - In-hand
 - Athletic activities
 - Lameness Locator
- Flexion Tests
- Palpation
 - Bone, joints, muscle, tendons, ligaments, subcutaneous
- Diagnostic imaging
UT Rehabilitation Program

• Acclimation period (1-2 days)
 – Walk in and walk out of underwater treadmill
 – Walk in, turn on treadmill, stop treadmill, walk out
 – May use sedation during acclimation if needed

UT Rehabilitation Program

• Begin rehabilitation program (Days 3-7)
 – Speed – walk at 2 -3 mph
 – Warm up – 5 minutes
 – Duration - 5 minutes
 – Cool down – 5 minutes
 – Frequency – Once per day
 – Rinse and dry off
• Outcome measures
 – Walking comfortably for 15 minutes duration @ 2 -3 mph
 • If successful proceed to next level

UT Rehabilitation Program

• Week 2
 – Increase duration of walk up to 10 minutes (20 total)
 • May increase speed
• Week 3
 – Increase duration of walk up to 15 minutes (25 total)
• Week 4
 – Increase duration of walk up to 20 minutes (30 total)
• Week 5
 – Maximum exercise intensity of 5 mph for 20 minutes (30 total)
 • May introduce cross-training activities (not sets)
• Warm up and cool down for each session
 – At least 5 minutes each at 2 mph
Post-Treatment Assessment

• Gait and performance evaluation
 – Straight and circle
 – Ground surface – hard, soft, deep, shallow
 – Walk, trot, canter, gallop
 – In-hand
 – Athletic activities
 – Lameness Locator weekly
• Flexion Tests
• Palpation
 – Bone, joints, muscle, tendons, ligaments, subcutaneous
• Diagnostic imaging

UT UnderWater Treadmill

Above Ground Units
Hudson - Aquapacer

- Unit 12’ long x 5’ wide
 - Covers about 12’ x 12’ floor space
 - Filled weight – 9300 lbs
- Control panel
- Treadmill belt lock for loading and unloading
- Direct drive motor – 1 to 11 mph
- Water storage chamber
- Filtration and heating
- Costs
 - Unit – approx $100,000
 - Installation - $1500-2000
 - Sales tax and shipping costs

HydroHorse, LLC – Hydro Ciser

- Unit – 13’ long x 13’ wide x 4’ (5”) tall
 - Up to 46” water height
- Roller-less belt, variable speed
- Shallow reservoir tank, filters, heater, jets
- Ground level entry
- Cost
 - 4’ tall - $53,000
 - 5’ tall - $58,000
 - Does not include 13’ x 13’ concrete pit

In Ground Units
HydroHorse LLC – Model 101A

- In ground, pre-plumbed
- 10’ treadmill in 46’ fiberglass spa
- Water heater, 2 filters, 12 Jacuzzi jets
- 2 skimmers
- 10 HP hydraulic supply
- Costs
 - Treadmill: $65,000
 - Installation: $16,000
 - Freight: $2.00/mi

HydroHorse LLC – Model 201

- In ground
- 10’ treadmill in 54’ concrete pool
- Water heater, 2 filters, 12 Jacuzzi jets
- 1 skimmer
- 10 HP hydraulic supply
- Single phase power
- Costs
 - Treadmill: $54,000
 - Installation: bid
 - Freight: $2.00/mi

HydroHorse LLC – Model 1000 Superior

- In ground
- 12’ treadmill in 56’ concrete pool
- Water heater, 2 filters, 12 Jacuzzi jets
- 3 skimmers
- 20 HP hydraulic supply
- Three phase power
- Costs
 - Treadmill: $73,000
 - Installation: bid
 - Freight: $2.00/mi
Above-ground vs. Under-ground

Equipment

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footprint size</td>
<td>400 sq ft</td>
<td>900 sq ft</td>
</tr>
<tr>
<td>Dedicated building</td>
<td>No</td>
<td>Possibly</td>
</tr>
<tr>
<td>Treadmill size</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treadmill power</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Installation

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of installation</td>
<td>easy</td>
<td>+/- difficult</td>
</tr>
<tr>
<td>Excavation cost</td>
<td>$</td>
<td>$$$</td>
</tr>
<tr>
<td>Concrete flooring</td>
<td>+/-</td>
<td>Yes</td>
</tr>
<tr>
<td>Plumbing, electrical, heating</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pre-plumbed units</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fencing around unit</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Personnel Required

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation of Unit</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>Maintenance</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
Above-ground vs. Under-ground

- Rehabilitation and Training
 - Ease of entry and exit: +
 - Acclimatization: Yes
 - Safety exit, jump out: +
 - Visualization of limb movement: Yes
 - Ability to adjust water level: Yes
 - Higher water level: +
 - Change water temperature: Yes
 - Freedom of movement: +

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of entry and exit</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Acclimatization</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Safety exit, jump out</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Visualization of limb movement</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ability to adjust water level</td>
<td>Yes</td>
<td>Limited</td>
</tr>
<tr>
<td>Higher water level</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Change water temperature</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Freedom of movement</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

- Maintenance
 - Filter size – water quality: +
 - Water exchange rate: ++
 - Access to plumbing: ++
 - Energy usage: -
 - Access to treadmill: +++
 - Cleaning: +++
 - Waste water evacuation: +++
 - Overhead hoist: No

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter size – water quality</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Water exchange rate</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Access to plumbing</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Energy usage</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Access to treadmill</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Cleaning</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Waste water evacuation</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Overhead hoist</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Treadmill vs. Over Ground Exercise

- 7% longer stance duration of forelimbs
- Increased retraction angles of both fore and hind limbs
- Decreased protraction angles of hind limb
- Hind hoof contact after fore foot contact
 - Reversed with over ground locomotion
- 23% reduced vertical movement of withers
- Higher consistency of locomotion
 - Stride and stance duration

UW Treadmill vs. Ground Exercise

• Build and maintain musculoskeletal tissues
 – Bone, joints, muscle, tendons, ligaments
• Hand-walking rehabilitation
 – Controlled environment vs. loose in-hand
• Reduced concussion
 – Joint and tendon healing
• Resistive work
 – Muscle atrophy and development
• Variable speeds
 – Maintain and develop cardiovascular fitness

Swimming

• Horses are not natural swimmers
• Unnatural locomotion
 – High head carriage
 – Extended back – twisting motion for cornering
 – Forelimbs – regulate lateral balance
 – Hindlimbs – propulsion, exaggerated kicking motion
 – No ground contact – evolution, healing
• Resistive training
 – Hypermetria, increased range of joint motion
• Cardiovascular fitness
 – Water pressure on chest – respiratory stress

Swimming vs. Over Ground Exercise

• Loss of proprioceptive input
 – Altered proprioceptive input – Muscles, joints, tendons, ligaments
 – Altered proprioceptive processing
 – Reduced postural muscle stimulation
 • Importance of cross-training – varied ground surfaces
• Differences in muscle group stimulation
 – Swimming vs. galloping
 • Limited training benefits?
• Maximal oxygen consumption during swimming
 – Limited by the ventilatory system
 – Oxygen transport has to work harder
 • Facilitates oxygen transport development?
Swimming Pools

• Linear pool
 – 10 m long
 – Access ramps on each end
 – Swim against current

• Circular pool
 – 12-14 m diameter
 – 3-5 m deep