Equine Cervical Mobilization and Manipulation

Steve Adair MS, DVM, DACVS, DACVSMR
University of Tennessee Veterinary Medical Center

What is Joint Mobilization & Manipulation

• Manual techniques
 – Used to modulate pain
 – Used to increase ROM
 – Used to treat joint dysfunctions that limit ROM by specifically addressing altered joint mechanics

• Factors that may alter joint mechanics
 – Pain & Muscle guarding
 – Joint hypomobility (Fixation)
 – Joint effusion
 – Contractures, fibrosis or adhesions in joint capsules or supporting ligaments
 – Degenerative joint disease

Mobilization

• Passive Mobilization
 – Passive joint movement for increasing ROM or decreasing pain
 – Applied to joints & related soft tissues at varying speeds, amplitudes or rhythm
 – Force is light enough that patient’s can stop the movement

• Dynamic or Active Mobilization
 – Dynamic or active joint movement that is carried out and controlled by the patient
Manipulation

- Characterized by manual thrust delivered at high velocity in a specific direction
- Incorporates a sudden, forceful thrust that is beyond the patient’s control
- Performed at the physiologic joint motion limit (Elastic Barrier) and into paraphysiologic space
- Only done after receiving appropriate training
 - Veterinary Spinal Manipulative Therapy
 - Osteopathic
 - Chiropractic

Mechanics of Manipulation

- Force = Mass x Acceleration
 - Increasing mass increases force but increases tissue damage
 - Increasing acceleration increases force without increasing tissue damage
- Specific contact point and a specific line of direction

Joint Motion

Adapted from Leach 1994
Effects of Joint Mobilization & Manipulation

- **Neurophysiological effects**
 - Stimulates mechanoreceptors to pain
 - Affect muscle spasm & muscle guarding – nociceptive stimulation
 - Increase in awareness of position & motion because of afferent nerve impulses
 - Experimental body of evidence exists indicating that spinal manipulation stimulates primary afferent neurons from paraspinal tissues, the motor control system, and pain processing

- **Nutritional effects**
 - Distraction or gliding movements – cause synovial fluid movement
 - Movement can improve nutrient exchange that results from joint swelling or immobilization

- **Mechanical effects**
 - Improve mobility of hypomobile joints (adhesions & thickened CT from immobilization – loosens)
 - Maintain extensibility & tensile strength of articular tissues

Contraindications of Joint Mobilization & Manipulation

- **Avoid the following**
 - Acute inflammation
 - Malignancy
 - Ligamentous rupture
 - Neurological Disease
 - Vertebral fracture
 - Cervical Vertebral Malformation
 - Infection

Research Validation of Vertebral Motion

 - The largest changes in intersegmental angles were at C6, especially for the chin-to-top and chin-to-arms mobilization exercises
 - The angle at C1 revealed considerable bending in the chin-to-girth position but not in the 2 more caudal positions

 - Smallest FE ROM was in the C5-C6 joint and the largest was in the C3-C4 joint
 - Smallest AR ROM was in the C5-C6 joint and largest AR ROM was in the C1-C2 joint
 - Smallest LB ROM was in the C3-C6 joint and the largest LB ROM was in the C7-T1 joint
Research Validation of Vertebral Motion

 - The largest angular differences involved the cranial and caudal cervical joints with smaller angular differences in the mid-neck.
 - The articulations at the extremities of the cervical vertebral column are primarily responsible for sagittal plane position and orientation of the head and neck.
 - Ex vivo extension of the cervical spine causes a decrease in intervertebral foramina dimensions at segments C4–T1, similar to that found in man.
 - In vivo extension of the cervical spine could possibly interfere with peripheral nerve functioning at segments C4–T1.

CLINICAL CERVICAL MOBILIZATION & MANIPULATION

What we are Treating

- Primarily joint dysfunction
 - Abnormal Motion
 - Primarily decreased motion
- Vertebral Subluxation Complex
 - Chiropractic definition
Vertebral Motion

- Flexion – extension
- Axial rotation
- Lateral bending
- Coupled motion
- Compression/tension
- Vertical shear
- Horizontal shear

Vertebral Motion Segment

- Two adjacent vertebrae and all associated soft tissues
 - Vertebral ligaments
 - Joint capsules
 - Intervertebral foramen content
 - Intervertebral disk
 - Muscles

Types of Fixations

- Vertebral motion segment unable to move from neutral position
- Vertebral motion segment unable to move completely through its range of motion
- Vertebral motion segment unable to return to its neutral position
Prior to Mobilization & Manipulation

- Complete History
- Complete Physical Exam
- Evaluate conformation and symmetry
- Watch walking and trotting straight line
- Watch walking tight circles and backing
- Any evidence of lameness, marked pain or neurologic signs stop and have evaluated by veterinarian

Occiput – C1

- “Yes” Joint
- The OA joint is classified as a ginglymus with a hinge-like action and its movements are mainly flexion and extension, with some lateral oblique gliding
- SCP – C1 on side of fixation or dorsally
- Rest head on opposite shoulder
- LOD – towards episternal notch or P-A

Occiput – C1 Motion
C1 Passive & Manipulation

• “No” Joint
• Trochoid or pivot joint
• Primarily rotation, but also some flexion-extension & bending
• SCP - Lamina Pedicle Junction of C2
• LOD – 45º L-M & 45º I-S

C1 – C2 Motion
C1 – C2 Passive

C2 Passive and Manipulation

• SCP - Dorsal ridge of C2
• LOD - P – A with a scoop I – S

C2 – C3

• SCP - Lamina Pedicle Junction
• LOD – 45º L-M & 45º I-S
C2-C3 Motion

C2 - C3 Passive & Manipulation

C3 – C6

- Primarily lateral bending
- C5-C6 – Smallest amount of motion of all segments
- C5-C7 increased incidence of DJD
- SCP - Lamina Pedicle Junction
- LOD - 45° L-M & 45° I-S
C3 – C6 Motion

C3 – C6 Passive & Manipulation

C6 – T1

• Primarily lateral bending; some flexion-extension
• SCP – Lamina pedicle in front of scapula
• LOD - Slight I – S L – M (slightly above horizontal)
• Limb must be flexed
C6 – C7 Motion

C7 – T1 Motion

C6 – T1 Passive/Dynamic Manipulation
General Guidelines

• Mobilizations are best performed after warm up
• Manipulations may be performed at any time
• Passive mobilizations may be performed just prior to manipulations
• Mobilizations are performed several times per week
• Manipulations are performed at various intervals depending on fixation, improvement and use
 – Every 7-10 days up to 1-2 times per year

Manipulations

• Initial series of 3 manipulations performed at 10-14 day intervals
 – If no or minimal improvement noted after 3 manipulations then need to look elsewhere
• After 3 manipulations then increase time between manipulations
• Give a day of rest after manipulations
• Instruct owner to do active mobilizations at home between manipulations