Rehabilitation of Equine Tendonitis and Desmitis

Steve Adair MS, DVM Dip ACVS & ACVSMR
University of Tennessee Veterinary Medical Center

Tendon and Ligaments

Anatomy

Pieces and Parts

- 60-70% water
- Dry matter is mostly collagen Type I
- Compared to tendons, ligaments have
 - lower percentage of collagen
 - higher percentage of proteoglycans and water
 - less organized collagen fibers
 - Lower # of fibroblasts

http://www.qualitycarept.com/Injuries-Conditions/Ankle/Ankle-Anatomy/a~47/article.html
The “Glue”

- Vessels, nerves and lymphatics run in the endotenon which is an extension of the epitelen/paratenon
- Covered by connective tissue, paratenon or tendon sheath
 - fluid provides nutrients & lubrication
- Retinaculum

Function

- Tendon
 - Connect muscle to bone
 - transmit forces
 - Function as springs (elasticity)
 - modulate forces when moving, providing stability with out extra work
 - highly efficient at storing and recovering energy
- Ligaments
 - Bone to bone
 - Mechanical reinforcement

Healing

- Inflammatory phase
 - Occurs at 1-7 days
 - Influx of neutrophils and macrophages
 - Production of type III collagen
 - Growth factors involved
 - TGF-β1
 - IGF
 - PDGF
 - BMPs -12 and -13
 - bFGF
Healing

• Proliferation phase
 – occurs at 7-21 days
 – gradually replaced by type I collagen
 – tendons and ligaments are weakest at day 5-21

• Remodeling phase
 – occurs at >14 days

• Maturation phase
 – up to 18 months

Factors that impair healing

• Intra-articular/tendon sheath
 – Extra-articular ligaments have a greater capacity to heal compared with intra-articular ligaments

• Increasing age

• Immobilization
 – Reduces strength of both intact and repaired ligament

• NSAIDS

• Decreased growth factors

• Decreased expression of genes involved with tendon and ligament healing

Factors that improve healing

• Extra-articular/sheath

• Compromised immune response

• Mesenchymal stem cells

• Growth factors

• Scaffolds to help primary ligament healing (instead of reconstruction)

• Neuropeptides
Scarring

- Tendons and ligaments heal with scar tissue that
 - Reduces ultimate strength
 - Causes adhesions

Primary Sites Seen

- Proximal Rear Suspensory Ligament
- Superficial Digital Flexor Tendon
- Proximal Front Suspensory Ligament
- Inferior Check Ligament
- Deep Digital Flexor Tendon

Tendon/Ligament Problems

- Developmental
- Acquired
 - Tendinitis/Desmitis
 - Traumatic division of flexor/extensor tendons or ligaments
 - Acquired contracture
 - Septic tendinitis
 - Tenosynovitis
Tendinitis/Desmitis

• Inflammation of the tendon/ligament, commonly with disruption of some fibers
• Causes
 – Overextension → breaking of fibers → hemorrhage & edema within tendon/ligament → swelling and pressure → further damage of fibers
• Most commonly involves SDF and Suspensory ligaments

Tendinitis/Desmitis

• Diagnosis
 – Clinical Signs
 – Lameness Exam
 – Ultrasound
 • Evaluate for fiber disruption
 • Not as useful for early tendinitis
 • Underestimates damage
 • Monitor healing
 – MRI
 • Gold Standard

Tendinitis/Desmitis

• Healing process
 – Slow due to poor blood supply and constant tension
 – New collagen fibers replace the torn fibers
 • More fibrous (not as elastic)
 • Laid in a crisscross pattern, not lengthwise (weaker)
 • Results in weaker tendon more prone to re-injury
Tendinitis/Desmitis

- **Treatment**
 - Mild cases
 - Anti-inflammatory
 - Support bandage
 - Stall rest (gradual return to exercise)
 - Shoeing
 - Moderate to severe cases
 - Conservative – not likely to be successful in athletic horses
 - Surgery
 - Biologic Medicine
 - Rehabilitation

- **Surgery**
 - SDF – superior check ligament desmotomy
 - DDF – inferior check ligament desmotomy
 - Tendon/Ligament splitting – several small incisions in tendon/ligament
 - Drains blood and fluid → relieves pressure
 - Collagen feels in more quickly with “deflated” tendon
 - Improves blood supply via mild inflammation
 - Rear PSD
 - Neurectomy
 - Fasciotomy

Biologic Medicine

- Bone Marrow Concentrate
- Platelet Rich Plasma (PRP)
- Stem Cells
- Scaffolds/Braces
Bone Marrow Concentrate

- Straight bone marrow can be used but has fat and bone spicules that may result in poor healing
- Centrifuged so regenerative cells, growth factors and platelets are separated for injection

Platelet Rich Plasma

- Platelets play a prominent and likely determinant role in wound healing
- Platelets are activated by exposure to damaged tissue and initiation of the clotting cascade
- Degranulation of the α-granules release numerous growth factors
- Initial burst of growth factor release
 - 95% of pre-synthesized factors are released in the first hour
 - Platelets continue to synthesize and release factors for an additional 5-10 days

PRP Mode of Action

- Platelet-rich plasma contains a 3- to 5-fold increase in growth factor concentrations
- Platelet-rich plasma, with a platelet concentration of at least 1,000,000 platelets/μl in 5 mls of plasma, is associated with the enhancement of healing
PRP Mode of Action

• Cytokines play important roles in cell proliferation, chemotaxis, cell differentiation, and angiogenesis
• Bioactive factors are also contained in the dense granules in platelets
 – Dense granules contain serotonin, histamine, dopamine, calcium, and adenosine
 – These non-growth factors have fundamental effects on the biologic aspects of wound healing

PRP Formulation

• Platelet-rich plasma can only be made from anticoagulated blood
• Usually use unclotted for soft tissue injection
 – Act of injection activates the platelets
• Bovine thrombin can be used to activate the clotting mechanism and form a gel
 – Used on wounds and in bone defects

Stem Cell Therapy

• Stem cells are characterized by their ability to self-renew and to differentiate into multiple different cell types and tissues
• Stem cells are generally considered as being embryonic or non-embryonic in origin
• The available stem cell treatments for horses are autologous or allogeneic and use adult mesenchymal tissue-derived stem cells (MSC)
Mode of Action

• Stem cells, or more aptly named progenitor cells, are applied to an injured tissue where they engraft, differentiate into the tissue-specific fibroblast(?), which in turn produces the appropriate wound matrix
 – Over simplification
 – More complex
 – May supply growth factors or simple to serve to recruit other reparative cells

Stem Cell Source

• Most are from autogenous source
 – Allogeneic is becoming more prevalent
 – All stem cells are not created equal
• Current options in stem cell treatments center on donor connective tissue type and level of isolation and expansion
• Bone marrow aspirate and fat currently appear to be the most practical at this point in time

Bone Marrow

• There are currently three techniques available to acquire bone marrow (BM) stem cells
 – One uses direct injection of the heterogeneous mixed-cell population in a BM aspirate
 – Another uses centrifugation with the aim of increasing the number of stem cells in each injection
 – Third relies on a cultured cell population derived from BM
Bone Marrow

• Direct Injection
 – Low numbers of stem cells
 – Contains fat and bone spicules
• Bone Marrow Concentrate
 – Generate a 12-fold concentrate of stem cells
• Ex Vivo Expansion
 – Takes 2-4 weeks
 – More than 10 x 10^6 cells are available

Fat Derived Stem Cells

• Adipose-derived MSC’s (A-MSC’s) exhibited a similar degree of multipotentiality to BM-MSC’s
 – Available technique uses a mixture of cells derived from the adipose tissue (Vascular Stromal Fraction)
 – Advantage of supplying large numbers of different cells in a short period (48 hours)
• Stem cells from fat are now being expanded ex-vivo
 – Takes 2-4 weeks
 – Homogenous cell population
Other Sources

• Autogenous
 – Peripheral blood
 – Umbilical blood (stored)
 – Skin
• Allogenic
 – Embryonic
 – Bone marrow
 – Any other tissue by induction
 – Fully characterized

Scaffolds/Braces

• NovoBrace®
 – Chemically made internal brace formed by injection of a crosslinking agent directly into the tendon or ligament
 • Adds mechanical support to the injury
 • Flexible brace prevents further propagation of the lesion
 – Injected above, below and into lesion
 – Can be combined with other therapies
• Nanofiber technology
 – Can be used as a bridge
 – Can be impregnated with stem cells

Therapy Summary

• Combination of acute therapy and long-term rehabilitation
• Goals of therapy
 – Reduce inflammation
 – Maintain blood flow
 – Decrease formation of scar tissue
• Long term commitment (Gillis, AAEP Proceedings 1997)
 – Minimum of 6 months restricted athletic activity
 – Successful cases require 8-9 months of rest and rehabilitation to return to full former function
 – *Not certain this still applies
Tendon and Ligament Rehabilitation

Rehabilitation Options

- Contralateral limb support
- Cold therapy
- Heat therapy
- Low level laser
- Therapeutic ultrasound
- Electrical stimulation
- PEM Therapy
- Whole Body Vibration
- Hyperbaric oxygen therapy (HBOT)
- Extracorporeal shockwave therapy (ESWT)
- UW treadmill
- Therapeutic exercise
- Nutritional Support

Contralateral limb support

- Horse Swing Lifter
 - Allows horse to move around.
 - Provides up to 300kg of resistance/lift
 - Can be locked so horse cannot lay down
- SoftRides®
- Other digital supports
Cold therapy

- Indications
 - Acute injury
 - Inflammation
 - Cellulitis
 - Muscle spasms

- Techniques
 - Cold compression
 - Turbulator boot
 - Ice
 - Ice water circulation
 - Cold Salt Water

Cold Therapy

- Temperatures between 35° and 50°F
- Post-surgical
 - Dry cold – no compression
 - 2-3 sessions daily for 30 min each
- Bowed tendons, desmitis
 - Cold compression in acute phase
 - 30-min sessions every 2 hrs for 1st 24 - 48 hrs
 - After 2 days cold therapy sessions 1-4 times/day for up to 2 weeks
 - Sessions 30-45 minutes each
- Re-evaluate before going on to next steps of tx

Heat therapy

- Indications
 - Improve range of motion
 - Pain relief
 - Chronic stage of healing
 - For healing tendon injuries
 - Can be performed prior to exercise for added stretch

- Techniques
 - Therapeutic US
 - Microwave HT
 - Not validated in equine
Low Level Laser Therapy

- Pain relief
- Decreases inflammation
- Improves healing

Protocol
- Class 4 laser
- 10W/cm²
- Daily

Therapeutic Ultrasound

- Protocol
 - Set unit at either 1.1 or 3.3 MHz depending on depth of tissues
 - 1.1 MHz for most tendons
 - Constant motion of sound head is imperative to avoid overheating damage to tissues
 - 15 – 20 min sessions
 - Lots of gel for conductivity
 - Continuous/pulsed depending on stage

Electrical Techniques

- Indications
 - Pain relief
 - Muscle spasm
 - Muscle re-education
 - Re-innervation
 - Increase strength

- Techniques
 - TENS
 - E-Stim
 - Microwave HT
Electrical Stimulation

- **TENS**
 - Set stimulation to degree that the patient is comfortable
 - Can be used multiple times daily

- **E-Stim**
 - Acute pain/spasm
 - Interferential
 - 80-150 Hz
 - Continuous cycle
 - 30 minutes
 - Chronic pain/spasm
 - Premod
 - 1-10 Hz
 - 5-5 cycle-time
 - 30-45 min up to twice daily
 - Visibly contracting

- **Interferential**
 - 80-150 Hz
 - Continuous cycle
 - 30 minutes

- **Premod**
 - 1-10 Hz
 - 5-5 cycle-time
 - 30-45 min up to twice daily
 - Visibly contracting

Electrical Stimulation

- **E-Stim**
 - Strengthening muscle
 - Russian
 - 30-50 Hz
 - 20-30% duty cycle
 - 10-20 min, 2-3 x weekly
 - Edema reduction
 - Premod
 - Continuous cycle
 - 10-30 minutes
 - Twitching/slight contractions

- **Russian**
 - 30-50 Hz
 - 20-30% duty cycle
 - 10-20 min, 2-3 x weekly
 - Twitching/slight contractions

Electrical stimulation

- **Pad placements**
 - 2-4 pads
 - Over area of pain
 - Acupuncture/acupressure points
 - Over nerves leading to and from target area
 - Crisscross or in-line
 - Dermatomes
Electrical Stimulation

- Contraindications
 - Infection
 - Neoplasia
 - Pregnancy
 - Pacemakers
 - High intensity around heart

Pulsed ElectroMagnetic

- Can be used 15 -20 min per treatment time 2x daily
- Best for bone healing
- May have analgesic effect

Whole Body Vibration

- Different types of waveforms available
- Mechanical stimulus
- Possible effects
 - Improve or maintain bone density
 - Increase blood flow
 - Improve neuromuscular function
- Treat 2-3 x/day for weeks to months
Hyperbaric Oxygen Therapy

- Increases delivery of oxygen to tissues by as much as 15X normal levels
- Goal: increase the amount of oxygen delivered to diseased tissue

How it works
- Increases oxygen levels in diseased tissues
- Improves and speeds healing
- Reduces inflammation and swelling
- **Increase levels of circulating stem cells

Primary and Complementary therapy

Indications: any condition or disease in which the circulation to the diseased tissue has been compromised

Indications
- Infection
- Stem cells
- Tendon ruptures
- Fractures
- Tendonitis
- Desmitis
- Myositis
- Septic arthritis
- Neurologic diseases (EPM)
Hyperbaric Oxygen Therapy

• Treatment periods
 – Injuries, such as cellulitis, tendon tears/ruptures, and others are treated 5-7 days/week for at least 2 weeks
• Re-evaluation is necessary at least weekly to check progress

Hyperbaric Oxygen Therapy

• Hazardous materials checklist for chamber
 – Velcro
 – Petroleum-based products
 – Shod horses
 – Grooming oils/hoof products
 – Nylon
 – Any kind of metal except brass
 – Low flash points (alcohol)
 – Electronic monitoring devices
 – Anything that has potential to spark
• If you are unsure about a product entering the chamber, check MSDS (material safety data sheet)
• NO FEVERS!!

Hyperbaric Oxygen Therapy

• Horses may or may not need sedation
• Close any open catheters
• Pressure level
 – Initial depth of 2.0 ATM for 45 min
 – Consecutive dives to 2.5 ATM for 60 min at pressure with 100% oxygen
Extracorporeal shock wave

• Indications
 – Bone-tendon injuries
 – Suspensory desmitis
 – Skin injuries
 – Non-union fxs
 – Kissing spines
 – Avulsion fxs

• Bone & soft tissue junction

Extracorporeal shock wave

• Trodes
 – Come in sizes of 5, 20, 35 and 80mm
 – Depth varies w/ Trode size with the 5mm being most shallow

• Procedure
 – Energy levels allow further customization for individual patient
 – Treatment lasts ~10-15 minutes with the horse lightly sedated
 – Horses have been found to have periods of analgesia post shock wave

Extracorporeal Shockwave Therapy

http://www.pulsevet.com/
Underwater treadmill

- Low-impact mobilization and strengthening
- Tailored to the individual
- May do therapeutic ultrasound prior to exercise

Underwater treadmill

- Horses must become accustomed to the treadmill
 - 1st day (or more days), horses are trained to get on/off
 - May need sedation initially
 - Horses start at a slow walk of ~2-3 mph for average sized horse for short duration ~5 minutes
 - Subsequent sessions gradually increase time and speed
- Re-evaluation should be done at least weekly

Underwater treadmill

- For rehabilitation
 - Maintenance rate is a moderate walk for 30 minutes
 - Number of sessions vary with progress but typically number 15-20
- Final notes
 - Appropriate warm-up and cool-down period mandatory
 - Don’t forget water temperature for comfort
UT UW Treadmill Program

• Acclimation period (1-2 days)
 – Walk in and walk out of underwater treadmill
 – Walk in, turn on treadmill, stop treadmill, walk out
 – May use sedation during acclimation if needed

UT UW Treadmill Program

• Begin rehabilitation program (Days 3-7)
 – Speed – walk at 2-3 mph
 – Warm up – 5 minutes
 – Duration - 5 minutes
 – Cool down – 5 minutes
 – Frequency - Once per day
 – Rinse and dry off

• Outcome measures
 – Walking comfortably for 15 minutes duration @ 2-3 mph
 • If successful proceed to next level

UT UW Treadmill Program

• Week 2
 – Increase duration of walk up to 10 minutes (20 total)
 – May increase speed

• Week 3
 – Increase duration of walk up to 15 minutes (25 total)

• Week 4
 – Increase duration of walk up to 20 minutes (30 total)

• Week 5
 – Maximum exercise intensity of 5 mph for 20 minutes (30 total)
 – May introduce cross-training activities (trot sets)

• Warm up and cool down for each session
 – At least 5 minutes each at 2 mph
Work Under Saddle

To be done a minimum of 3 days per week but not to exceed 5 days per week.
First 3 weeks tack walking. Start at 30 min, and add 5 min/week. US before starting trot.

<table>
<thead>
<tr>
<th>Week</th>
<th>Walk</th>
<th>Trot</th>
<th>Walk</th>
<th>Trot</th>
<th>Walk</th>
<th>Trot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 min</td>
<td>15 min</td>
<td>30 min</td>
<td>15 min</td>
<td>30 min</td>
<td>15 min</td>
</tr>
<tr>
<td>2</td>
<td>35 min</td>
<td>20 min</td>
<td>35 min</td>
<td>20 min</td>
<td>35 min</td>
<td>20 min</td>
</tr>
<tr>
<td>3</td>
<td>40 min</td>
<td>25 min</td>
<td>40 min</td>
<td>25 min</td>
<td>40 min</td>
<td>25 min</td>
</tr>
</tbody>
</table>

Starting Week 7 following ultrasound exam

<table>
<thead>
<tr>
<th>Week</th>
<th>Walk</th>
<th>Trot</th>
<th>Canter</th>
<th>Walk</th>
<th>Trot</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>10 min</td>
<td>5 min</td>
<td>5 min</td>
<td>10 min</td>
<td>5 min</td>
</tr>
<tr>
<td>8</td>
<td>15 min</td>
<td>7.5 min</td>
<td>7.5 min</td>
<td>15 min</td>
<td>7.5 min</td>
</tr>
<tr>
<td>9</td>
<td>20 min</td>
<td>10 min</td>
<td>10 min</td>
<td>20 min</td>
<td>10 min</td>
</tr>
<tr>
<td>10</td>
<td>25 min</td>
<td>12.5 min</td>
<td>12.5 min</td>
<td>25 min</td>
<td>12.5 min</td>
</tr>
</tbody>
</table>

Starting Week 11 – US Exam. No restrictions; gradual start back to normal work over a 2-3 week period.

Nutrition

- Important for healing
- Must be tailored to the individual
 - Base diet
 - Ad lib fresh water
 - 2% of BW of good quality grass hay, fed in Nibble Bags™ or Hay Bags™
 - Plain salt
 - Add concentrate, ration balancer or supplement based on individual
- Essential amino acids, antioxidants, Omega FA

UT Typical Plan

- SX, Biologic therapy, etc
- Days -2 – 14: HBOT, hand walking. Cold for 3-5 days, therapeutic laser, Whole body vibration
- Days 14-28: hand walking, therapeutic US, repeat biologic therapy, WBV
- Re-evaluate
- Days 30 –60: Underwater treadmill 3-5 days per week, free walker 2-3 times per day, WBV
 - Therapeutic ultrasound/hyperthermia prior to treadmill
- Re-evaluate
- Discharge for riding program
Proximal Front Suspensory
FD Stem Cells + HBOT

Proximal Rear Suspensory
Neurectomy, & FD Stem Cells 2/13/08 followed by HBOT & UW Treadmill

Rear DDF
FD Stem Cells + HBOT