Short Term Mechanical Circulatory Support for Advanced Cardiogenic Shock

Christopher K. Gordon MSN, ACNP-BC

Disclosures

• I have no disclosures to report

Objectives

1. Pathophysiology
2. Epidemiology
3. Assessment
4. Management
 1. Medical
 2. Mechanical
Heart Failure

- A condition in which there is insufficient cardiac output to meet the metabolic demands of the body.
- Can be caused by a variety of conditions that decrease the ability of the heart muscle to pump blood; either by damaging and/or overloading.

Heart Failure

- Estimated 5.7 million people in the United States have heart failure.
- Heart Failure expected to increase to > 8 million by 2030.
- Acute Coronary Syndrome affecting nearly 700,000 people annually.
- One of the most frequent causes of unscheduled hospital admissions.

Heart Failure

- Divided into multiple sub-categories
 - Left sided
 - Right sided
 - Bi-Ventricular
 - Systolic
 - Diastolic
 - Acute
 - Chronic
 - Acute on Chronic
Acute Heart Failure (AHF)

- Can occur with either impaired or preserved ejection fraction
- Heart failure is categorized as a heart disorder but can lead to a systemic disorder affecting all vital organs
- Mechanisms of dysfunction:
 - Congestion and hypo-perfusion

Management of AHF

- Needs to be efficient, rapid and organized
- Multidisciplinary Care:
 - Intensivists, Heart Failure Cardiologist, Interventional Cardiologist, Cardiac Surgeon, Advance practice provider, Nurse, Respiratory therapist
- Goals of care
 - Restoring Cardiac Output
 - Identifying and treating the etiology

Clinical Presentation of AHF

- Importance of physical exam
 - Jugular Vein Distension (JVD)
 - Hepatomegaly
 - Peripheral Edema
 - Tachypnea
 - Rales
 - Orthopnea
 - Gallops (S3)
 - Heart Murmurs
 - Tachycardia
 - Pulsus alternans
 - Cool Extremities
 - Restlessness and/or confusion
Diagnostic Evaluation

- Blood laboratory tests:
 - Brain natriuretic peptide (BNP)
 - Troponins
 - Renal Function
 - Liver Function
 - Lactic acid
 - Blood gas analysis

- Studies:
 - Electrocardiogram (ECG)
 - Echocardiogram
 - Chest X-rays
 - Early cardiac catheterization
 • If indicated

Hemodynamic Profile

Warm & Wet

- Diuretics
 - Loop Diuretics are typical first line
 • Furosemide bolus (0.5 mg/kg)
 - Thiazide Diuretics, combination therapy or 2nd line
 • Diuril 250 mg to 500mg IV bolus

- Vasodilators
 - Nitrates
 • Nitroglycerin (10-20 mcg/min, up to 200 mcg/min)
 • Nitroprusside (0.3 mcg/kg/min, up to 5 mcg/kg/min)
Warm & Wet

- **Oxygen**
 - Often needed secondary to hypoxia related to pulmonary edema
- **Use of Non Invasive Ventilation**
 - Pulmonary edema often times can rapidly progress
 - Due to flooding of the alveoli secondary to increase in hydrostatic capillary pressure with the lung
- **Morphine**
 - Opiate that can help with anxiety related to air hunger
 - Can lead to increased rates of intubation

Cold & Wet
Cardiogenic Shock

- Clinically presents as hypotension with evidence of organ hypo-perfusion
 - Altered Mental Status
 - Cold, clammy skin and/or extremities (mottling)
 - Oliguria (< 0.5 ml/kg/hr or < 30 ml/hr)
 - Respiratory distress in the form of pulmonary congestion

Cardiogenic Shock

- The most severe form of acute heart failure
- Commonly a direct sequela of acute coronary syndrome
 - Complicating ~ 5%-8% of acute myocardial infarctions
- Non-ischemic Etiologies less common (1%)
 - Acute on chronic decompensations
 - Myocarditis
 - Takotsubo cardiomyopathy
 - Acute valvular disease

Cardiogenic Shock

- Hemodynamically defined as:
 - Persistent hypotension with systolic blood pressure < 90 mmHg or mean arterial blood pressure 30 mmHg below baseline
 - Inadequate Cardiac Output/Cardiac Index (CI < 2.2L/min/m²) despite normal or elevated pre-load
 - Pulmonary capillary wedge pressure > or = to 18 mmHg
 - Central venous pressure > or = to 10 mmHg

Medical Management

- Goal is to restore Cardiac Output and reverse end-organ dysfunction
- Hemodynamic Evaluation
 - Echocardiograms
 - Arterial line
 - Lactic acid
 - Blood gases
 - Liver function
 - Renal function
 - Central Venous Access (SVC vs PAC)
 - SvO_2, CVP, PCWP, PVR, SVR, Stroke volume

Inotropes

- Intravenous medications used to improve cardiac contractility
- Use for the shortest duration and at the lowest dose to maintain perfusion
- Adverse Risks:
 - Increased risk of atrial and ventricular arrhythmias
 - Systemic Hypotension
 - Increased Myocardial Oxygen Demand
Dobutamine

- Synthetic catecholamine that stimulates Beta\textsubscript{1} receptors
- Does not increase blood pressure; can stimulate peripheral Beta\textsubscript{2} receptors that can lead to hypotension
- Frequently associated with:
 - Tachycardia
 - Arrhythmias: supraventricular and ventricular
 - Increased myocardial oxygen demand
- Dosing:
 - 2 to 20 mcg/kg/min
- Short half life

Milrinone

- Phosphodiesterase inhibitor
 - Increases cyclic AMP levels thus increasing intracellular calcium levels
 - Net result is increased inotropy
- Vasodilation of both pulmonary and systemic circulatory systems
 - Often require combination vasopressor support
- No significant chronotropic affects
 - Can lead to arrhythmias due to increase in myocardial oxygen demand
- Dose:
 - 0.125 to 0.75 mcg/kg/min
- Long half life (2-6 hours)
 - Renally cleared

Epinephrine

- Catecholamine: non specific agonist of all adrenergic receptors Beta\textsubscript{1,2,3}, Alpha\textsubscript{1,2} – dose dependent
- Frequently associated with:
 - Tachycardia
 - Hypertension
 - Arrhythmias: supraventricular and ventricular
 - Increased myocardial oxygen demand
- Dosing:
 - 0.02 to 0.2 mcg/kg/min
- Short half life
Vasopressors

• Intravenous medications used to improve blood pressure
• Use for the shortest duration and at the lowest dose to maintain perfusion
• Adverse Risks:
 – Decreased peripheral tissue perfusion
 – Decreased microcirculation
 – Lead to tissue necrosis

Norepinephrine

• Catecholamine: potent vasoconstrictor α_1 – agonist
• Frequently associated with:
 – Bradycardia
 – Hypertension
 – Arrhythmias: supraventricular and ventricular
 – Limb Ischemia
• Dosing:
 – 0.02 to 0.2 mcg/kg/min (higher doses used in sepsis)
• Short half life

Dopamine

• Catecholamine: non specific agonist of all adrenergic receptors $\beta_{1,2,3}$, $\alpha_{1,2}$, Dopa – dose dependent
• Frequently associated with:
 – Tachycardia
 – Arrhythmias: supraventricular and ventricular
 – Increased myocardial oxygen demand
• Dosing:
 – 2 to 20 mcg/kg/min
• Short half life
Failure of Medical Management

- Persistent hypotension & hypo-perfusion despite use of 2 or more inotropic and/or vasopressor agents
- Rising lactic acid
- Evolving organ dysfunction

Short Term MCS Devices

1. Intra Aortic Balloon Pump (IABP)
2. Impella
3. Tandem Heart
4. Extra Corporeal Membrane Oxygenation (ECMO)

Short Term MCS

- Optimal timing / early initiation of mechanical support
- Optimal level of support to restore adequate perfusion of end organs
- Optimal prevention and management of potential device related complications
IABP

- Helium filled balloon
- Inflates during diastole / Deflates during Systole
- Volume shifting ~ 40ml per heart beat (inc. SV)
- Can increase Cardiac Output ~ 0.5 to 1L
- During Diastole
 - Increase Coronary Perfusion
 - Improved reperfusion after intervention
- During Systole
 - Hallmark is afterload reduction
 - Reduction in LV end-diastolic pressure
 - Reduction in pulmonary capillary wedge pressure
 - Decrease in LV wall stress and myocardial oxygen demand

IABP

- Percutaneously placed via the femoral artery or left axillary artery (7 to 8 French)
- Placed in the descending thoracic aorta
 - Can be placed at the bedside, cath lab or OR
 - Quick initiation

Complications

- Bleeding
- Hemolysis
- Risk of limb ischemia
- Vascular compromise (dissection)

Management

- Low complexity
 - Trigger / Timing is automatic (1:1,1:2,1:3)
- Anticoagulation
 - Heparin drip (PTT goal 40-50)
- Vascular checks
Tandem Heart

• A continuous flow centrifugal pump
• Can supply up to 4L/min cardiac output
• Percutaneously placed via the femoral vessels:
 – 21 Fr inflow cannula: left atrium via femoral vein and then trans-septal puncture
 – 15-17 Fr outflow in the femoral artery
• Placed in the cardiac cath lab
Tandem Heart

- Superior to the IABP in improving hemodynamic endpoints:
 - Greater increase in cardiac output/cardiac index
 - Greater increase in mean arterial pressure
 - Greater decrease in cardiac filling pressures
 - Reduced PCWP, CVP, PAP
 - Reduced cardiac workload and oxygen demand

Tandem Heart

- Complexity of insertion limits the use
- Complications
 - Vascular compromise
 - Malposition of cannula
 - Can cause intra cardiac shunt
 - Bleeding / Coagulopathies
 - Insertion site
 - GIB
 - Limb Ischemia
 - Infection
 - SIRS/Sepsis
 - Stroke

Management

- Higher level of training required
 - Nursing, advanced practice providers, physicians
- Anticoagulation
 - PTT 50-60
- Vascular checks
- Device placement
 - X-ray and Echocardiograms
Impella

- Continuous Axial Flow Pump
- Positioned across the aortic valve via access from the femoral artery
- Typically placed in the Cath Lab or OR
 - Fluoroscopy and Echocardiogram guided
 - Interventional Cardiology and/or Surgeon

Impella

- 3 Impella Devices:
 1. Impella 2.5
 - 13Fr cannula percutaneously placed
 - 12Fr micro-axial catheter pump
 - Can provide up to 2.5 LPM cardiac output
 2. Impella CP
 - Percutaneously placed
 - 14Fr micro-axial catheter pump
 - Can provide up to 4.0 LPM cardiac output
 3. Impella 5.0
 - 22 Fr cannula placed by cut down of the femoral artery
 - 21 Fr micro-axial catheter pump
 - Can provide up to 5.0 LPM cardiac output
 - Needs Surgical repair for removal
 - Can also be placed via axillary artery
Complications

- Bleeding
- Hemolysis
- Risk of limb ischemia
- Aortic Insufficiency

- Vascular compromise (dissection)
- Malposition

Management

- Anticoagulation
- Vascular checks
- Placement
 - Echocardiogram and x-ray
Extracorporeal membrane oxygenation (ECMO)

- A technique of providing cardiac and/or respiratory support to patients whose heart and lungs are unable to function appropriately.
- Works by removing blood from the body, artificially removing carbon dioxide, and re-oxygenating red blood cells prior to returning blood back to the body.
Basic Principles of ECMO

- **Support for the failing heart and/or lungs**
 - Must meet metabolic demands:
 - Cardiac output (VA)
 - Adequate oxygenation and CO2 regulation

- **Veno-arterial (VA)**
 - Bypasses/rests the heart & lungs
 - Drains blood from venous system, returns oxygenated blood to arterial circulation

- **Veno-venous (VV)**
 - Rests the lungs, relying on native cardiac circulation
 - Drains blood from venous system, returns oxygenated blood to venous system (right atrium)

Circuit

- **CentriMag**
 - Magnetically levitated, centrifugal pump
 - 2-10LPM
 - Oxygenator & Blood pump are separate

- **CardioHelp**
 - Centrifugal pump
 - 2-10LPM
 - Blood pump & oxygenator are 1 piece
ECMO
- Percutaneous placement by any trained provider in any location:
 - Intensivist, Cardiologist, Surgeon, Emergency Room
- Arterial Access: 15 to 19 Fr
- Venous Access: 21 to 27 Fr
- Limb Perfusion catheter: 5 to 7 Fr
- Typical Flow 4-6 LPM
- Provides both cardiac and pulmonary support to the patient
 - Can increase Afterload (No AI)
 - Leading to increased myocardial wall stress
 - Decreased LV Pre-load
 - Decreased PCWP
- Decreased myocardial oxygen demand

Management
- Bedside Nurse vs Perfusion
- Arterial blood returned in retrograde direction
 - 2 Perfusion circuits
 - Native vs ECMO
 - Harlequin Syndrome –> need to monitor oxygenation from right radial artery
- Anticoagulation
 - Heparin drip with PTT goal 50-60
 - Hemorrhage vs embolic events vs hemolysis
- Vascular Checks

Complications
- Bleeding
- Hemolysis
- Limb ischemia
- Vascular compromise (dissection)
- Thromboembolic events
- Aortic Insufficiency
Summary

- Cardiogenic Shock continues to carry a high in-hospital mortality rate, 40-50% despite advances in early revascularization
- Early identification and initiation of therapy is paramount in preventing development of multi-system organ dysfunction
- Hallmark therapies with inotropes/vasopressor and early revascularization have led to the reduction of mortality, but rates remain high
- Advances in mechanical circulatory support offer innovative ways to restore circulation and rest the heart but further research is needed

Thank You