Barrett's Esophagus: How GERD can Lead to Esophageal Cancer

Scott Hendrickson, DO, FACOI
Gastroenterologist
Cancer Treatment Centers of America
Oklahoma Osteopathic Association
April 30, 2015

Objectives

• GERD/Erosive esophagitis
 – Review:
 • Pathophysiology
 • Diagnosis
 • Treatment
 • Link to Barrett’s esophagus

• Barrett’s esophagus
 – Review:
 • Pathophysiology
 • Diagnosis/screening
 • Treatment

GERD

• Facts
 – Gastroesophageal reflux is physiologic
 – GERD is consequence of gastric contents moving retrograde effortlessly from stomach to esophagus
 – 44% of Americans experience heartburn or acid regurgitation at least once/month
 – Only 7% of patients have erosive esophagitis
 – Caucasian males have higher incidence of esophagitis than African Americans, Asians
 – Prevalence in most Asian countries much lower- low fat diet, lower BMI, H. pylori effect?
GERD

- Mechanisms for reflux
 - Transient lower esophageal sphincter relaxations
 - Hypotensive LES-uncommon
 - Hiatal hernia
 - Commonly associated
 - Direct correlation controversial
 - Reduced esophageal acid clearance
 - Decreased salivation
 - Cigarette smoking, Xerostomia
 - Water brash is copius salivation (esophagosalivary reflex)
 - Tissue resistance
 - Microscopic changes in the mucosa

- Symptoms
 - Frequency and severity of heartburn does not predict degree of damage
 - Up to one third of patients with Barrett’s do not have symptoms
 - Dysphagia
 - “Water brash”
 - Chest pain
 - Reflux-induced asthma
 - Reflux laryngitis
 - Chronic cough
 - Dental erosion
GERD

- Diagnosis
 - Empiric trial of acid suppression
 - Omeprazole 40mg BID for 2 weeks
 - Endoscopy
 - Major role is to diagnose and treat GERD complications and to define Barrett’s esophagus
 - Only 20% to 60% sensitivity
 - Alarm symptoms should initiate endoscopy
 - Dysphagia, odynophagia, wt. loss, bleeding
 - Los Angeles Classification
 - Esophageal pH monitoring/impedance
 - Before fundoplication, symptomatic pts with normal endoscopy, extraesophageal manifestations

Ph/Impedance Monitoring

- Catheter-free pH Monitoring System
 - Radiotransmitter placed in esophagus with data recorder worn by patient; capsule passes through the digestive tract.
- Combined impedance and pH monitoring
 - Allows measurement of acid and nonacid reflux
 - Reasonable choice for monitoring
 - Values and interpretation of nonacid reflux not as well characterized and difficult to interpret

Treatment

Prescription / Over the Counter Medicine

$300 / Meds
GERD

• Treatment
 – Prognosis depends greatly on whether they have erosive or non-erosive disease, pts unlikely to cross over to other group
 – Lifestyle modifications
 • Proven in studies: elevation of head of bed, left lateral decubitus position, and weight loss
 – OTC meds-usually for infrequent heartburn episodes, do not heal esophagitis
 – Antacids, Gaviscon, H2RAs
 – PPIs-much more effective in healing esophagitis, especially LA grade C/D

Food and Medications that may Worsen GERD Symptoms

<table>
<thead>
<tr>
<th>Foods</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoholic beverages</td>
<td>Anticholinergics</td>
</tr>
<tr>
<td>Carbonated beverages</td>
<td>Barbiturates</td>
</tr>
<tr>
<td>Citrus fruit drinks</td>
<td>Caffeine</td>
</tr>
<tr>
<td>Chocolate</td>
<td>Calcium channel blockers (e.g. dihydropyridine)</td>
</tr>
<tr>
<td>Coffee</td>
<td>Nicotine</td>
</tr>
<tr>
<td>Fatty Foods</td>
<td>Nitrates</td>
</tr>
<tr>
<td>Peppermint</td>
<td>NSAIDs</td>
</tr>
<tr>
<td>Spicy foods</td>
<td>Theophylline</td>
</tr>
<tr>
<td>Tomato products</td>
<td></td>
</tr>
</tbody>
</table>

GERD

• Treatment
 – Surgery
 • Fundoplication
 – Candidates:
 « Pts controlled on PPI desiring alternative treatment
 « Pt with volume regurgitation, aspiration, uncontrolled on PPIs
 « Recurrent peptic strictures in young pts
 – Extensive testing must be done pre-op to rule out other conditions (gastroparesis, achalasia, Barrett’s, etc)
 – Barrett’s esophagus does not regress
 – Post-op dysphagia – 19%
 – 25%-60% are back on acid-suppressive med in 5-15yrs
 – High-volume centers have better outcomes
Fundoplication

GERD

• Treatment
 – Endoscopic
 • Stretta, Enteryx, Gatekeeper, EndoCinch - none have proven safety, efficacy at this time

Barrett’s Esophagus Epidemiology

• Barrett’s esophagus is the condition in which metaplastic columnar epithelium replaces squamous epithelium in the distal esophagus
• Develops as a consequence of GERD
• Predisposes to the development of adenocarcinoma
• Usually discovered in middle-aged individuals undergoing endoscopy, mean age of 55
• Acquired condition, not congenital
• Uncommon in African Americans, Asians
• Male to female ratio 2:1
• Prevalence varies from 0.9 to 20 percent (depending on population studied)
Epidemiology

- Prevalence 5.6% in patients with no history of heartburn
- Prevalence 10-15% in patients with chronic GERD
- Sensitivity of endoscopy for detection approximately 80%
- Prevalence may be higher in patients with peptic strictures

Diagnostic Criteria

- Two criteria must be fulfilled:
 - Documentation of columnar epithelium in the distal esophagus
 - Histologic examination must reveal specialized intestinal metaplasia (gastric cardia-type epithelium not definitive)

Diagnostic Criteria, Continued

- Squamocolumnar (Z-line) and gastroesophageal (GEJ) junctions must be identified to further classify Barrett’s esophagus
 - Long segment Barrett’s-distance between Z-line and GEJ >3cm
 - Pts tend to have more severe reflux (upright and supine)
 - Short segment Barrett’s-distance between Z-line and GEJ <3cm
 - Less severe reflux (upright), higher LES pressures
- Identification of cardia-type epithelium above the Z-line is likely a precursor to intestinal metaplasia
Barrett's Esophagus

Pathophysiology

- Barrett's esophagus develops through the process of metaplasia
 - Tissue chronically exposed to noxious factors (reflux) promoting repair and aberrant differentiation
 - Metaplastic columnar cells appear to be more resistant to reflux-induced injury
 - Pattern of reflux may predispose to neoplasia
 - Pulsed acid exposure increases cell proliferation
 - Continuous acid exposure decreases proliferation

Barrett's Esophagus

- Metaplasia-dysplasia-carcinoma sequence
Dysplasia and Adenocarcinoma

- Estimates of cancer risk with Barrett's
 - General population - 0.5% per year
 - High-grade dysplasia - 5-8% per year
 - Low-grade dysplasia - poorly defined, somewhere between general population and high-grade

Screening

- There is no convincing evidence to suggest routine screening (endoscopy) of patients with GERD
- 40% of patients with adenocarcinoma of the esophagus had no history of GERD
- Studies have failed to prove targeted screening of patients with GERD has prevented deaths from adenocarcinoma
- Symptoms suggesting complicated GERD should undergo endoscopic evaluation:
 - Anorexia, wt loss, dysphagia, bleeding, odynophagia
- Patients with chronic GERD are more likely to have Barrett's and therefore more likely to benefit from endoscopy

Barrett's Esophagus

- Management
Management

• Three major components:
 – Treatment of the associated GERD
 – Endoscopic surveillance to detect dysplasia
 – Treatment of dysplasia
• Treatment of GERD
 – Similar principles to patients without Barrett’s
 – Anti-reflux surgery
 • Does not appear to be more effective than medical therapy for preventing adenocarcinoma

Management

• Treatment of GERD
 – Control of gastric secretion may be difficult to due profound reflux diathesis (not resistance to PPIs)
 – May consider addition of nocturnal H2RA
 – Proliferation and differentiation markers improve in bx specimens when GERD is well controlled (suggesting prevention of carcinogenesis)
 – Timing of acid suppression may be important in the influence on progression to cancer (starting therapy early in the disease process)

Management Guidelines

• American College of Gastroenterology
 – Screening remains controversial, highest yield is in >50 Caucasian males with longstanding heartburn
 – The grade of dysplasia determines surveillance interval (should confirm by expert pathologist)
 – Low-grade dysplasia- repeat endoscopy in 6 months, if no high-grade dysplasia found then yearly until two consecutive exams without dysplasia
 – High-grade dysplasia (flat mucosa)- repeat endoscopy in 3 months, irregular mucosa should undergo endoscopic mucosal resection for staging
 – High-grade dysplasia pts should be counseled regarding therapeutic options (intensive surveillance, esophagectomy, ablation)
Management

- **Endoscopic surveillance**
 - Survival benefit has not been demonstrated in randomized prospective studies
 - Surveillance is complicated by many variables involved in deciding the benefit
 - Variable incidence of dysplasia/carcinoma
 - Risk of the procedure
 - Quality of life after invasive procedures

- **Evidence supporting surveillance**
 - Observational studies have shown a benefit in detecting curable dysplasia and asymptomatic cancers are less advanced
 - Surveillance is performed primarily to detect dysplasia, which is the precursor to cancer
 - However, the rate of progression from dysplasia to cancer is unclear
 - Low-grade dysplasia is not diagnosed reliably (significant discrepancy between studies, criteria)

- **Detecting dysplasia**
 - Often patchy and can be easily missed
 - Extensive random biopsies can help reduce sampling error
 - Several endoscopic techniques can help detect subtle mucosal changes
 - Chromoendoscopy, confocal microendoscopy, narrow band imaging, autofluorescence, high-resolution white light endoscopy
Barrett’s Esophagus: Narrow-Band Imaging

Management

- Treatment of high-grade dysplasia
 - Esophagectomy
 - Endoscopic ablation therapies
 - Endoscopic mucosal resection
 - Intensive endoscopic surveillance until bx reveals adenocarcinoma
Management

• Esophagectomy
 – Only definitive therapy to remove all neoplastic epithelium
 – Highest rate of procedure-related mortality and long-term morbidity (mortality 3-12%)
 – Minimally invasive techniques are being developed (currently similar morbidity/mortality but shorter hospital stays)
 – Mortality probably less than 5% in healthy patients with early neoplasia

Esophagectomy

Management

• Endoscopic ablative therapies
 – Radiofrequency ablation (HALO system)
 • Ablates Barrett’s using radiofrequency energy delivered by a balloon with series of closely spaced electrodes
 • Rapidly generates a circumferential thermal injury with controlled depth and uniformity
 • May have lower rates of stricture formation and buried metaplasia
 • Trials have shown 90.5% eradication with low-grade dysplasia, 81% with high-grade dysplasia
Management

• Photodynamic therapy
 – (PDT) is based upon the ability of chemical agents, known as photosensitizers, to produce cytotoxicity in the presence of oxygen after stimulation by light of an appropriate wavelength
 – After systemic injection, the photosensitizer is absorbed by most tissues, but for reasons not yet clearly understood, it is selectively retained at a higher concentration by neoplastic tissue
 – Effective for eradication of dysplastic BE but higher rate of complications (stricture, esophagitis, ulceration)
 – Photosensitizer can remain in skin for up to 30 days

Photodynamic Therapy
Management

• Cryotherapy
 – Cryotherapy system is used to apply cold nitrogen or carbon dioxide gas endoscopically to the Barrett's esophagus
 – Indicated for dysplastic BE
 – Observational studies suggest it will eradicate high-grade dysplasia in approximately 95 to 100 percent of patients
 – Low rate of complications
Endoscopic Resection

- Excision of a large segment of esophageal mucosa down to the submucosa
- Provides large-tissue specimens that can be examined by the pathologist to determine the character and extent of the lesion, and the adequacy of resection
- Can also be combined with endoscopic ablative therapies for the eradication of Barrett's mucosa in patients who have visible lesions
- Guidelines recommend ER for the treatment and staging of nodular BE and suspected intramucosal adenocarcinoma

Endoscopic Mucosal Resection

Chemoprevention

- Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), may protect against the development of Barrett's esophagus or progression of BE
- Inhibition of COX-2 has been shown to have anti-proliferative and pro-apoptotic effects in Barrett's-associated esophageal adenocarcinoma cell lines
- Unclear if benefit outweighs adverse GI side effects
- Large trial in UK ongoing
Summary

• GERD is a very common problem in the U.S. that can eventually progress to Barrett’s esophagus and eventually esophageal adenocarcinoma
• Screening of at-risk individuals and surveillance of BE may lead to a reduction in the incidence of this aggressive form of cancer
• Effective treatments are available for eradication of BE

Questions?