PRESCRIBING HORMONAL CONTRACEPTIVES TO WOMEN WITH MIGRAINE (CON)

Gretchen E. Tietjen, MD
Department of Neurology
University of Toledo

Disclosures
- Advisory Boards: Eli Lilly, Dr. Reddy’s
- Common Stock: J&J, Stryker
- Associate Editor: Headache

Objectives/Discussion Points
- Risk of stroke associated with contraceptives
- Risk of stroke associated with migraine, specifically migraine with aura
- Risk of stroke in woman with migraine using OCP
- Guidelines addressing use of OCP in women with migraine with aura
OCP use is associated with ischemic stroke, MI, and VTE

Risk of Stroke with OCP. Meta-analysis 2000

• More than 10 million women on low dose OCP (< 50 mcg) in U.S.

• Meta-analysis: 16 studies were analyzed using random effects modeling

• Ischemic stroke risk (controlling for HTN and smoking):

 RR 1.93 (95% CI 1.36-2.74) for <50 mcg EE/day

 • Increase from 4.4 to 8.5 strokes per 100,000 women
 1 additional stroke per 24,000

 • Increase of 425 strokes per year

Gillum LA, et al. JAMA 2000;284:72-78

Risk of Stroke with OCP. Meta-analysis 2013

<table>
<thead>
<tr>
<th>Authors, year of publication</th>
<th>Year of recruitment</th>
<th>Type of study</th>
<th>Number of women</th>
<th>RR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARO collaboration, 1996</td>
<td>1989-1993</td>
<td>Case control</td>
<td>141,073</td>
<td>1.3(0.97-1.7)</td>
</tr>
<tr>
<td>Holstein et al., 1997</td>
<td>1991-1995</td>
<td>Case control</td>
<td>229,775</td>
<td>2.0(1.20-3.4)</td>
</tr>
<tr>
<td>Holtz et al., 1998</td>
<td>1991-1998</td>
<td>Case control</td>
<td>144,788</td>
<td>0.7(0.3-1.8)</td>
</tr>
<tr>
<td>Schulte et al., 1998</td>
<td>1991-1995</td>
<td>Case control</td>
<td>175,191</td>
<td>0.7(0.3-1.5)</td>
</tr>
<tr>
<td>Kooperman et al., 1997</td>
<td>NA</td>
<td>Case control</td>
<td>140,136</td>
<td>4.1(1.7-10.8)</td>
</tr>
<tr>
<td>Lefebvre et al., 1998</td>
<td>1991-1998</td>
<td>Case control</td>
<td>626,482</td>
<td>0.7(0.4-1.1)</td>
</tr>
<tr>
<td>Tonsil et al., 1995</td>
<td>1996-1997</td>
<td>Case control</td>
<td>72,173</td>
<td>3.1(1.2-8.2)</td>
</tr>
<tr>
<td>Knott et al., 1998, 2002</td>
<td>1991-1995</td>
<td>Case control</td>
<td>203,225</td>
<td>2.1(1.5-3.1)</td>
</tr>
<tr>
<td>Steinh et al., 2004</td>
<td>1991-1998</td>
<td>Case control</td>
<td>236,282</td>
<td>1.8(0.8-3.9)</td>
</tr>
<tr>
<td>Nightingale et al., 2004</td>
<td>1991-1998</td>
<td>Menedez case</td>
<td>180,139</td>
<td>2.3(1.2-4.5)</td>
</tr>
<tr>
<td>Mustelin et al., 2004</td>
<td>1994-1995</td>
<td>Case control</td>
<td>105,283</td>
<td>2.3(1.4-3.8)</td>
</tr>
<tr>
<td>Peruzzi et al., 2007</td>
<td>NA</td>
<td>Case control</td>
<td>108,256</td>
<td>4.0(2.5-6.5)</td>
</tr>
<tr>
<td>Yang et al., 1999</td>
<td>1991-2004</td>
<td>Cohort</td>
<td>153,069</td>
<td>3.1(1.9-5.3)</td>
</tr>
<tr>
<td>Gallagher et al., 2013a</td>
<td>1989-2000</td>
<td>Cohort</td>
<td>699,267,400</td>
<td>0.9(0.7-1.2)</td>
</tr>
</tbody>
</table>

RR: Risk ratio. CI: Confidence interval.

* Not available.
* Mortality events.
* Not included in the meta-analysis because the risk accounted for comparison of even cases with severe cases.

Plu-Bureau G. Best Practice & Research Clinical Endocrinology & Metabolism 27 (2013) 35-45
Cochrane Review of MI and Stroke risk with OCP use. Meta-analysis 2015

- 28 publications included, moderate quality of evidence
- Risk of ischemic stroke was 1.7-fold (95% CI 1.5-1.9) increase in OCP users
- Risk of myocardial infarction was 1.6-fold (95% CI 1.2-2.1) increase in OCP users
- Risk increased with higher dose of estrogen
- Risk did not vary clearly according to the generation of progestagen or according to progestagen type.

Risk of Stroke with OCP. Meta-analysis 2015

<table>
<thead>
<tr>
<th>Estrogen dose</th>
<th>Study #</th>
<th>OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50 mcg</td>
<td>9</td>
<td>3.3 (2.5-4.3)</td>
</tr>
<tr>
<td>< 50 mcg</td>
<td>11</td>
<td>2.0 (1.6-2.4)</td>
</tr>
<tr>
<td>30-40 mcg</td>
<td>5</td>
<td>1.8 (1.6-1.9)</td>
</tr>
<tr>
<td>20 mcg</td>
<td>3</td>
<td>1.6 (1.4-1.8)</td>
</tr>
<tr>
<td>Progestin only pills</td>
<td>4</td>
<td>0.99 (0.7-1.4)</td>
</tr>
</tbody>
</table>

Summary OR for first-ever ischemic stroke risk associated with current use of OCPs

Risk of Stroke with OCP

15 year Danish cohort study of 1.6 million women, 15-49 yo, 5036 events/9,336,662 person years

Although the absolute risks of thrombotic stroke and myocardial infarction associated with the use of hormonal contraception were low, the risk was increased by a factor of 0.9 to 1.7 with oral contraceptives that included ethinyl estradiol at a dose of 20 μg and by a factor of 1.3 to 2.3 with those that included ethinyl estradiol at a dose of 30 to 40 μg, with relatively small differences in risk according to progestagen type. (Funded by the Danish Heart Association.)

Study CHCs:
- Drospirenone (3.0 mg)/ethinyl estradiol (30 mcg) tablets
 - ATE—HR=2.01 (95% CI 1.06-3.81)
 - VTE—HR=1.77 (95% CI 1.33-2.35)
- Norelgestromin (6.0 mg)/EE (750 mcg) transdermal patch
- Etonogestrel (11.7 mg)/EE (2700 mcg) vaginal ring

Comparator CHCs
- Levonorgestrel (0.10 mg)/EE (20 mcg) tabs
- Levonorgestrel (0.15 mg)/EE (30 mcg) tabs
- Norethindrone (1 mg)/EE (20 mcg) tabs
- Norgestimate (0.18–0.25 mg)/EE (35 mcg) tabs

Risk of Venous thromboembolism (VTE)
- VTE = deep venous thrombosis, pulmonary embolus
- Rate of 10 per 100,000 women-years among non-pregnant women not using COCs
- The adjusted odds ratio (OR) for VTE associated with current low estrogen OCP use was 4.07 (95% CI 2.8–6.0)

Hormonal contraceptive—Summary
- Arterial disease, including coronary heart disease and stroke, is one of the major harmful effects of hormonal contraceptives. It is less common than venous thrombosis
- Reducing the daily dose of ethinyl-estradiol leads to a decrease in the risk of arterial disease
- The risk of arterial disease is similar among users of second and third generation pills
- Non-oral hormonal contraceptives are no safer than oral hormonal contraceptives
- Progestogen only pills appear not to be associated with an increased risk of myocardial infarction and stroke
OCP use is associated with thrombophilia
Balance of Hemostasis

ATIII, Protein C, Protein S \[\downarrow\] COAGULATION \[\uparrow\]
PAI-1, TAFI \[\downarrow\] FIBRINOLYSIS \[\uparrow\]
Alpha 2 Antiplasmin

PLATELETS, VWF, FIBRINOGEN, CRP
FACTORS II, VII, VIII

PLASMIN, TPA, UPA

Effect of OCP use on thrombotic risk

<table>
<thead>
<tr>
<th>Deleterious change</th>
<th>OCP-related change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen [\uparrow] = CV risk</td>
<td>[\uparrow]</td>
</tr>
<tr>
<td>PAI-1 [\uparrow] = CV risk</td>
<td>[\downarrow]</td>
</tr>
<tr>
<td>AT III [\downarrow] = VTE risk</td>
<td>[\downarrow]</td>
</tr>
<tr>
<td>Protein S [\downarrow] = VTE risk</td>
<td>[\downarrow]</td>
</tr>
<tr>
<td>CRP [\uparrow] = CV risk</td>
<td>[\downarrow]</td>
</tr>
</tbody>
</table>

Migraine is associated with ischemic stroke, MI and VTE
Migraine and Ischemic Stroke Meta-analyses
Of Relative Risk

 - All studies: 1.73 [1.13-2.29]
 - Migraine with Aura: 2.16 [1.53-3.03]
 - All studies: 2.04 [1.72-2.43]
 - Migraine with Aura: 2.25 [1.53-3.33]
 - All studies (prospective cohort): 1.64 [1.22-2.20]
 - Migraine with Aura: 2.14 [1.33-3.34]

Association between stroke and migraine with and without aura

Meta-analyses Results

- Stroke risk is double in women and likely NOT elevated in men
 - Women: RR, 95% CI 2.08 (1.13-3.84)
 - Men: RR, 95% CI 1.37 (0.89-2.11)
- Stroke risk is elevated in persons < 45 years old, especially women
 - Age <45: RR, 95% CI 2.65 (1.41-4.97)
 - Age <45, Women RR, 95% CI 3.65 (2.21-6.04)

Migraine and Ischemic Stroke
Nationwide population-based study in Taiwan
Peng KP, et al., Cephalalgia 2016; April 26
Two cohorts (migraine/no migraine) of 120K each followed 3.6 years
• Stroke risk is elevated in women <45 yo with migraine
 • aHR, 95% CI 3.48 (2.20-5.39)
• Stroke risk is elevated in women <45 years old, with migraine with aura
 • aHR, 95% CI 4.58 (2.45 – 8.56)

Migraine and Risk factors profiles in persons with stroke
• Advanced age: NO
• Male sex: NO
• CVD risk profile: NO
• Health Behaviors: YES
 • Smoking 9.03 (4.22-19.34)
 • OCP users 7.02 (1.51-32.68)

OCP use increases stroke risk in persons with migraine
Evidence from Case-Control Studies

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Study Pop.</th>
<th>Do COCs?</th>
<th>ischemic stroke risk in migraine?</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaborative Group, 1975</td>
<td>598 cases & controls 15-44y</td>
<td>No OCs</td>
<td>No Migraine</td>
<td>No standard mig criteria, self-report of COC use</td>
</tr>
<tr>
<td>Lidegaard 1993, 1995, 1996</td>
<td>320 cases 1357 controls</td>
<td>COC 30-50 mg, without migraine OR 1.8 COC use and migraine, estimated OR 5.0</td>
<td>No standard mig criteria, self-report of COC use</td>
<td></td>
</tr>
<tr>
<td>Toronto et al, 1995</td>
<td>72 cases 173 controls</td>
<td>No OCs</td>
<td>No Migraine</td>
<td>Self report COC use</td>
</tr>
<tr>
<td>Siwek et al, 1999</td>
<td>175 cases, 173 controls</td>
<td>Low dose COCs vs no COCs</td>
<td>No standard mig criteria, self-report of COC use</td>
<td></td>
</tr>
<tr>
<td>Chang et al, 1999</td>
<td>295 cases 736 controls</td>
<td></td>
<td>No standard mig criteria, self-report of COC use</td>
<td></td>
</tr>
<tr>
<td>Nightingale Farme, 2004</td>
<td>190 cases 1294 controls</td>
<td>Current COC use History of migraine</td>
<td>No standard mig criteria, didn't report joint effects</td>
<td></td>
</tr>
</tbody>
</table>

Curtis KM et al, Contraception 2006;73:189-94

Impact of risk factors on OCP-related risk of ischemic stroke

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 35 yo</td>
<td>3.08 (1.82-5.23)</td>
</tr>
<tr>
<td>< 35 yo</td>
<td>1.82 (1.38-2.39)</td>
</tr>
<tr>
<td>Migraine Yes</td>
<td>6.32 (2.35-17.05)</td>
</tr>
<tr>
<td>No</td>
<td>2.55 (1.10-5.91)</td>
</tr>
<tr>
<td>Hypertension Yes</td>
<td>8.02 (5.53-11.64)</td>
</tr>
<tr>
<td>No</td>
<td>2.73 (2.22-3.37)</td>
</tr>
<tr>
<td>Current Smoking Yes</td>
<td>4.90 (3.17-7.57)</td>
</tr>
<tr>
<td>No</td>
<td>2.59 (1.96-3.43)</td>
</tr>
<tr>
<td>Obesity Yes</td>
<td>1.78 (0.24-13.26)</td>
</tr>
<tr>
<td>No</td>
<td>2.03 (1.43-2.87)</td>
</tr>
</tbody>
</table>

Stroke risk with migraine based on OCP use

- Systematic review of case-control studies, all deemed of fair to poor quality
- Reference group is non users w/o migraine
- Limited evidence suggests a 2 to 4-fold increased risk of stroke among women with migraine (not separated by subtype) who use COCs compared with nonuse.

Tepper NK, Contraception 94 (2016) 630–640
Potential Mechanisms of stroke

- **Arteries**
 - Vasculopathy, endothelial dysfunction

- **Blood**
 - Hypercoagulability, arterial and venous thrombosis

- **Cardioembolism**
 - Patent foramen ovale

Migraine and stroke in migraine are associated with thrombophilia

Endothelial Activation Markers in Pre-menopausal women with migraine

<table>
<thead>
<tr>
<th>Variable</th>
<th>MA vs controls</th>
<th>MO vs control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidative stress</td>
<td>OR=6.6 (2-21)</td>
<td>OR=3.0 (0.9-10)</td>
</tr>
<tr>
<td>vWF %</td>
<td>OR=6.5 (2-22)</td>
<td>OR=4.6 (1.4-15)</td>
</tr>
<tr>
<td>CRP mg/L</td>
<td>OR=8.0 (2-28)</td>
<td>OR=2.6 (0.7-9)</td>
</tr>
</tbody>
</table>

Logistic regression adjusted for age, BMI, smoking, OCP, HTN

Tietjen GE, et al. Stroke 2009
Endothelial Activation Markers
in Pre-menopausal women with migraine

- Migraine was associated with:
 - TGF-β 1 OR=4.1 (95% CI, 3 -7.2)
 - IL-6 OR=5.0 (95% CI, 2 -13)
 - TNF α OR=11.9 (95% CI, 3.5-30.2)

Levels correlate with headache frequency, and with BMI.

Migraine and Vascular Disease Biomarkers. CAMERA Study

<table>
<thead>
<tr>
<th>Unadjusted comparisons</th>
<th>Migraine</th>
<th>MA</th>
<th>MO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR OR OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>1.89</td>
<td>1.97</td>
<td>1.79</td>
</tr>
<tr>
<td>hsCRP</td>
<td>1.59</td>
<td>1.74</td>
<td>1.43</td>
</tr>
<tr>
<td>Factor II</td>
<td>1.76</td>
<td>2.03</td>
<td>1.48</td>
</tr>
<tr>
<td>vWF Ag</td>
<td>0.76</td>
<td>0.69</td>
<td>0.86</td>
</tr>
<tr>
<td>D-dimer</td>
<td>1.02</td>
<td>1.22</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Migraine and Vascular Disease Biomarkers. CAMERA Study

<table>
<thead>
<tr>
<th>WOMEN</th>
<th>Migraine with Aura High frequency</th>
<th>Migraine with Aura Low frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>hsCRP</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>Factor II</td>
<td>+++</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WOMEN</th>
<th>Migraine with Aura High frequency</th>
<th>Migraine with Aura Low frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>hsCRP</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Factor II</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Adjusted for age, municipality, education level, smoking status, BMI, hypertension.
Migraine and Vascular Disease Biomarkers. CAMERA Study

- Fibrinogen, hs CRP, vWF Ag, and d-dimer
 - **DID** correlate with frequency and with duration of **aura**
 - **DID NOT** correlate with frequency and duration of **headache**

CAMERA Study

Deep White Matter Lesions
- In women, OR=2.1
- No association with migraine in men
- ≥1 attack/mos, OR 2.6

Biomarkers linked to WML
- Biomarkers linked to migraine
 - Aura, aura frequency, aura duration, and female sex

- Kruit et al, *JAMA* 2004
- Tietjen et al, *Cephalalgia* 2017

Migraine and Thrombophilia

- Associations with Migraine, especially with aura:
 - **DEFINITE**—high levels of estrogen states, platelets, RBCs, vWF antigen, fibrinogen, prothrombin, IPA antigen, and EMP
 - **POSSIBLE**—high levels of aPL, homocysteine, Protein S, and the MTHFR C677 T polymorphism (evidence conflicting)
 - **UNLIKELY**—Factor V Leiden, Prothrombin gene mutation (negative evidence in meta-analyses)

- Tietjen GE, Collins SA. Hypercoagulability and Migraine. *Headache* 2017
Migraine and Thrombophilia

- Migraine may cause a hypercoaguable state during and between attacks
- Ictal rise in platelet reactivity, vWF levels, cytokine levels
- EMP release may have lasting effects
- A hypercoaguable state may cause migraine with aura
- Aura (CSD) resulting from clot-induced brain ischemia, a TIA equivalent

Migraine Aura as a TIA Variant

Migraine aura is associated with PFO and with cardioembolic stroke

Patent Foramen Ovale

- Conduit for venous clots
- Enables serotonin (5HT) to avoid pulmonary filtration
- 5HT is prothrombotic
 - Causes oxidative stress
 - Activates the cerebral endothelium
 - Activates platelets
- PFO Closure
 - Decrease in left atrial 5 HT
 - Decrease in left atrial MMP 9

Review of 21 eligible studies with 5572 participants
- Odds Ratios for PFO-Migraine
 - Migraine with Aura: 3.4, p<.00001
 - MA+MO: 2.5, p=.0001
 - Migraine without Aura: Non-significant
Migraine and CV Risk factors in persons with stroke

The Italian Project on Stroke in Young Adults: 981 subjects, <45 y (mean 36 y), 51% women, migraine with aura was associated with:
- low cardiovascular disease risk profile
- Underlying pro-coagulant state (eg OCP)
- Cardiac right-to-left shunt (PFO)

Pezzini et al, Stroke. 2011;42:17-21

| Table 2. Migraine-Covariate Interaction OR of Age, Gender, Right-to-Left Shunt, Proatherosclerotic Risk Profile, and Thrombophilic Defects According to Multinomial Logistic Regression Model |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | MA vs No Migraine | MC vs No Migraine | MA vs MO |
| | OR | 95% CI | OR | 95% CI | OR | 95% CI |
| Age* | 1.06 | (0.90-1.25) | 1.06 | (0.94-1.19) | 1.00 | (0.83-1.21) |
| Women | 2.37 | (1.42-3.95) | 2.72 | (1.88-3.94) | 0.87 | (0.48-1.58) |
| Right-to-left shunt | 2.41 | (1.47-3.95) | 0.93 | (0.63-1.39) | 2.58 | (1.45-4.59) |
| Proatherosclerotic risk profile (<1 factor) | 0.50 | (0.26-0.99) | 0.71 | (0.44-1.14) | 0.71 | (0.30-1.66) |
| Combined thrombophilic defects (at least 1) | 2.21 | (1.05-4.68) | 0.78 | (0.37-1.63) | 2.83 | (1.13-7.07) |

*OR changes by 5-year units step.

Pezzini et al, Stroke. 2011;42:17-21

Patent Foramen Ovale

- Shared pathogenesis: same condition which causes migraine also causes stroke
- PFO leads of stroke via shunting of venous thrombi
- PFO leads to migraine via shunting of venous vasoactive substance
- Causative: Paradoxical cardioembolism causes ischemia-generated cortical spreading depression (aura)
- Congenital link between PFO and migraine
Presentation

MA, +/− history of other endotheliopathies	CBC, tc CRP, VWF antigen, fibrinogen, and fasting lipid profile, glucose level, glycosylated hemoglobin, homocysteine
MA, personal or family history of thrombosis	CBC, to CRP, VWF antigen, fibrinogen, and fasting lipid profile, glucose level, glycosylated hemoglobin, homocysteine, Protein C, Protein S, Antithrombin deficiencies APC, Prothrombin (Factor II), Antiphospholipid antibodies: LA, aCL, β2GP1
MA, + subcortical white matter abnormalities on brain MRI	CBC, tc CRP, VWF antigen, fibrinogen, and fasting lipid profile, glucose level, glycosylated hemoglobin, homocysteine, Antiphospholipid antibody profile: LA, aCL, β2GP1, CADASIL genetic testing if pattern is suggestive
MA, + stroke-like lesions on brain MRI	CBC, tc CRP, VWF antigen, fibrinogen, and fasting lipid profile, glucose level, glycosylated hemoglobin, homocysteine, Protein C, Protein S, Antithrombin deficiencies, APC, Prothrombin (Factor II), Antiphospholipid antibody profile: LA, aCL, β2GP1, Evaluation for PFO: TCD/TEE with agitated saline/TEE

Evaluation

- CBC, tc CRP, VWF antigen, fibrinogen, and fasting lipid profile, glucose level, glycosylated hemoglobin, homocysteine
- Protein C, Protein S, Antithrombin deficiencies APC, Prothrombin (Factor II)
- Antiphospholipid antibodies: LA, aCL, β2GP1
- CADASIL genetic testing if pattern is suggestive
- Evaluation for PFO: TCD/TEE with agitated saline/TEE

![Diagram of ENVIRONMENT, GENETICS, RISK FACTORS, PFO with R to L shunt, Transient Ischemic Attack, Migraine and Stroke: Shared Pathogenesis]

![Diagram of ENVIRONMENT, GENETICS, RISK FACTORS, PFO with R to L shunt, Transient Ischemic Attack, Migraine and Stroke: Shared Pathogenesis]
Summary

• Migraine, particularly migraine with aura, increases risk of stroke (OR 2-6)
• COC use increases risk of stroke (OR 2), risk being dependent on patient age and estrogen dose
• Risk of stroke in women with migraine using COC appears to be elevated by 2 to 4 fold c/t migraine w/o COC and (OR 5-17)
• Absolute stroke risk is low

Consensus Guidelines for OCP Use in Migraine

<table>
<thead>
<tr>
<th></th>
<th>WHO</th>
<th>ACOG</th>
<th>IHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migraine w/o aura</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>< 35 yo</td>
<td>generally should not use</td>
<td>generally should not use</td>
<td>Yes</td>
</tr>
<tr>
<td>Migraine w/o aura</td>
<td>No</td>
<td>No</td>
<td>+/− case-by-case</td>
</tr>
<tr>
<td>>35 yo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grades of existing Evidence

• WHO: Low or intermediate
 • Intermediate: Strong, consistent association and no plausible confounders
 • Low: No serious flaws in study quality
• ACOG: Level B
 • Based on limited or inconsistent scientific evidence
• IHS: Level C
 • Evidence based on observational studies

* World Health Organization, Reproductive Health and Research 2004
Recommendations

- Women with migraine should minimize other vascular risks
- Women with migraine with aura should not use hormonal therapy
- Women with migraine without aura on hormone therapy should stop if aura develops or headache worsens
- Efficacy as primary stroke preventive unproven

“Certainly, if all the patient needs is reliable contraception, there are multiple other options: tubal ligation, vasectomy, IUD, progestin-only pills – a discussion that could be held with the patient’s PCP or gynecologist. The need for this discussion here is that our patients – women with migraine – often have hormonally mediated headaches that require certain CHCs for prevention.”

Anne Calhoun

Hormonal Contraceptives and Migraine With Aura—Is There Still a Risk? Headache 2017;57:184-193
THE END