Blood Is Everywhere!

Important Potential and Emergent Causes of Bleeding In the Abdomen and Pelvis

Eugene Huo, MD
Laura Eisenmenger, MD
Spencer Behr, MD

University of California, San Francisco

Abstract CID: 2622776

Disclosures: Dr. Behr: GE Healthcare – Grant and Consultant. Navidea – Grant and Consultant
Hemoperitoneum

• Many trauma and atraumatic causes
• CT remains the “work horse” of evaluation
 • Fast with multiple time-point imaging
• CT signs of hemoperitoneum:
 • “Sentinel clot”
 • Active arterial extravasation
 • Mesenteric fluid
• Blood has \uparrow HU than other body fluids. However...
 • Depends on age, extent, and location
 • Unclotted extravascular blood $\approx 30–45$ HU
 • <30 HU if (a) ↓ serum hematocrit level, (b) anticoagulation, or (c) hemorrhage >48 hours old
• Locating the source of intraperitoneal hemorrhage can help direct management
Trauma

- Leading cause of death in the US < 45 years old
- Fourth highest overall cause of death
- FAST scan ultrasonography
 - Assess for hemopericardium and hemoperitoneum
 - Image the hepatorenal recess (Morison's pouch), perisplenic space, pericardium, and pelvis
- **Most common** location of bleed: liver, spleen
- Unique complication: “Page kidney”
- **Trauma grading**: American Association for the Surgery of Trauma (AAST)

Important CT findings of trauma

- **Solid organ injury**
 - Sentinel clot
 - High-attenuation fluid
 - Near or around the injured organ
 - In the cul-de-sacs, paracolic gutters, pelvis
 - Active extravasation:
 1. Active bleeding from a vessel on angiographic phase
 2. Serpiginous border of high-attenuation
 3. Changes in attenuation/morphology on multiphase imaging

- **Mesenteric or bowel injury**
 - Triangular high-attenuation interloop mesenteric fluid collections
 - Bowel wall thickening
 - Other signs of active extravasation in mesentery or by bowel loops
Case 1: Trauma

HISTORY: 53 yo status post motor vehicle collision, unstable vitals

IMAGING:
- **Post-contrast CT:** Hypoattenuating splenic lacerations (arrow) and active extravasation of contrast
- **Angiography:** Splenic artery aneurysm near the hilum and active extravasation (arrow)
- **Angiography post-embolization** with coils placed in the splenic aneurysm (orange arrow). No flow distal to the spleen and no further extravasation

TREATMENT: Embolization, solid organ removal, or observation depending on patient stability and available therapies
Case 2: Trauma, now hypertensive

- **HISTORY:** 32 yo s/p motor vehicle accident and with subsequent hypertension

- **IMAGING:**
 - Post-contrast CT (top): Subcapsular hyperattenuating fluid (arrow) compressing the left renal parenchyma, findings consistent with traumatic page kidney
 - Page kidney: Hypertension secondary to renal compression usually associated with a perinephric or subcapsular hematoma
 - Fluoroscopy (bottom) after drain placement with injected contrast in the subcapsular space

- **TREATMENT:** Surgical approach (nephrectomy or hematoma evacuation) and antihypertensive treatment
Vascular

- Intraperitoneal bleeding from vascular lesions is less common than retroperitoneal hemorrhage; however, morbidity and mortality can be high

- Acquired vascular lesions:
 - Aneurysms
 - Pseudoaneurysms
 - Angiodysplasia

- Congenital vascular lesions:
 - Arteriovenous malformations

- Special case: In young patients, splanchnic artery aneurysms should increase search for systemic vascular disease, most notably type IV Ehlers-Danlos syndrome. In patients with Ehlers-Danlos syndrome:
 - May present with a spontaneous aneurysm rupture
 - Angiography may be contraindicated because of the risk of aneurysm formation at the site of puncture and other vascular injury/complications
Aneurysm vs pseudoaneurysm

- **Aneurysm:**
 - Arterial dilation with intact vessel wall layers
 - Abdominal aortic aneurysm:
 - 300 million people globally
 - Elective repair common at 5.5cm
 - Without repair, ruptured is often fatal
 - Splenic artery aneurysm:
 - Most common visceral aneurysm (60%)
 - Spontaneous rupture occurs in 3%–10% of splenic artery aneurysms
 - Danger of rupture if large, in pregnant patient, or in patient with advanced liver disease

- **Pseudoaneurysm:**
 - Injury to all 3 layers of the arterial wall
 - Contained rupture with perfused sac that communicates with artery
 - Pseudoaneurysms of the hepatic, splenic, and gastroduodenal arteries can be complications of pancreatitis
 - Risk factors for major vascular complications of pancreatitis include: necrotizing pancreatitis, multi-organ failure, sepsis, and pancreatic fluid-collections such as abscesses, pseudocysts or walled-off necrosis
Case 3: Abdominal pain and syncope

- **HISTORY:** 93 yo male presenting with progressive abdominal pain for 24 hours
- **IMAGING:**
 - Pre-contrast CT with free abdominal fluid measuring 38 HU.
 - Arterial phase (axial and sagittal) CT: Enlarged abdominal aorta with active extravasation of contrast (arrows) and significant periaortic fat stranding/hemorrhage indicating an abdominal aortic aneurysm rupture.
 - Sagittal CT: Aortic wall defect (orange arrow)
 - Delayed images demonstrating extravasated contrast spreading throughout the peritoneal cavity
 - Patient died within 1 hour of CT
- **TREATMENT:** Stabilize patient and emergent surgical or endovascular aortic repair
Case 4: Recent pancreatitis

HISTORY: 58 yo M with episode of acute pancreatitis, now with new onset upper abdominal pain

IMAGING:
- Post-contrast CT axial and coronal images with a splenic artery pseudoaneurysm (arrowhead) within a pancreatic pseudocyst (arrow) and surrounding fat stranding
- Angiography demonstrating the splenic artery pseudoaneurysm (arrowhead) with active extravasation (arrow)

TREATMENT: Stabilization if bleeding actively. Embolization due to current bleeding or to prevent future bleeding because of the high risk
Gastrointestinal bleed

• Though not typically a cause of hemoperitoneum, gastrointestinal (GI) bleeds can be life threatening

• GI bleed
 • Can occur anywhere along the GI tract and pass through the bowel
 • Etiologies: mass, angiodysplasia, inflammation

• CTA remains an important diagnostic tool for nonvariceal upper GI bleeds but is less useful in lower GI bleeds

• ACR Appropriateness Criteria for lower GI bleeds state CTA use is usually appropriate as the next procedure/intervention for:
 • Active bleeding with hematochezia or melena in a hemodynamically stable patient
 • Intermittent or obscure non-localized recurrent bleeding

• CTA use may be appropriate when:
 • Active bleeding in a hemodynamically unstable patient or a patient who has required more than 5 units of blood
 • However, transcatheter arteriography/intervention (TAI) is usually recommended in this circumstance

• CTA is usually NOT recommended after lower GI bleeding source is already identified
Case 5: Melena

- **HISTORY:** 71 yo with melena
- **IMAGING:**
 - Axial and coronal CTA images demonstrating active extravasation into the ascending colon near the hepatic flexure (arrows), consistent with a lower GI bleed
 - Angiography images from a selective injection demonstrating brisk passage of contrast (arrows) into the colonic lumen
- **TREATMENT:** Stabilization of the patient. Endoscopic treatment or endovascular embolization. If unavailable, open surgery may be necessary
Gynecologic

• Reproductive tract is the most common source of spontaneous hemoperitoneum in women of childbearing age

• Primary imaging modality used is US;
 • CT used if the clinical findings are nonspecific

• **Most common:** ectopic pregnancy and ruptured ovarian cyst

• **Less common:** endometriosis, uterine rupture, and HELLP syndrome (subcapsular hematoma or hepatic rupture)
Case 6: Abdominal pain, vaginal bleeding

• HISTORY: 31 yo presenting with acute onset abdominal pain

• IMAGING:
 • Post-contrast CT: Attenuating blood products ranging from 35-50 HU in the pelvis, consistent with hemoperitoneum
 • Peripherally enhancing cystic mass in the right adnexa, consistent with a hemorrhagic cyst (arrow)
 • Transvaginal ultrasound 2 days later: Small amount of residual fluid. Patient symptoms resolved by this time.

• TREATMENT: If stable, observation. In unstable patients, blood transfusion or surgical intervention may be required
Case 7: Positive β-HCG, abdominal pain

- **HISTORY:** 36 yo with a positive β-HCG and acute onset left lower quadrant abdominal pain

- **IMAGING:**
 - Transvaginal US: Thickened endometrial lining (arrowheads) with no intrauterine gestational sac
 - M-mode transvaginal US: Left adnexa with detectable fetal heart rate, consistent with a live ectopic pregnancy (arrow)

- **TREATMENT:** Emergent surgical intervention
Ectopic pregnancy

• 1% of pregnancies
 • 97% of occurrences located in either the ampullary (most common) or the isthmic portion of the fallopian tube

• Risk factors:
 • Previous ectopic pregnancy
 • Pelvic inflammatory disease
 • In vitro fertilization
 • Intrauterine device
 • Tubal surgery

• Signs of ectopic pregnancy:
 • Positive human chorionic gonadotropin level of more than 2000 IU/L and no intrauterine pregnancy
 • Extraovarian mass
Case 8: Pregnant patient with RUQ pain

• **HISTORY:** 30 yo pregnant female presenting with severe right upper quadrant pain, hypertension, and elevated liver enzymes. Emergency c-section was performed followed by CT

• **IMAGING:**
 • Non-contrast CT: Large high density subcapsular hematoma (arrow) with adjacent hepatic edema. Dependent higher density fluid corresponding to blood in the paracolic gutter (arrowhead)

• **HELLP syndrome**
 • Peripartum triad: hemolysis, elevated liver enzymes, and low platelet count
 • Disseminated intravascular coagulation in 20%-40% of patients
 • Other complications: hepatic infarction, hematoma, hepatic rupture, and placental abruption

• **TREATMENT:** Stabilize patient and delivery of the pregnancy
Iatrogenic bleeds

• Any surgical procedure may cause hemoperitoneum

• Even minimally invasive percutaneous or endovascular procedures occasionally lead to intraperitoneal hemorrhage

• Causes:
 • Direct vascular injury
 • Examples: endovascular injury, percutaneous or open surgical injury (eg. inferior epigastric artery during paracentesis)
 • Biopsy or surgery involving a solid organ or mass
 • Examples: liver, spleen, renal cell carcinoma, hepatocellular carcinoma
Case 9: Percutaneous liver biopsy

- **HISTORY:** 45 yo with severe right upper quadrant pain s/p percutaneous liver biopsy

- **IMAGING:**
 - Post-contrast axial CT:
 - Hemoperitoneum and active extravasation (arrows) from the liver biopsy site consistent with biopsy-related hemorrhage

- **TREATMENT:** Conservative management with stabilization. Consider reversing anticoagulation. Endovascular embolization if patient demonstrates hemodynamic instability or continued hemorrhage
Case 10: Severe RUQ pain after TACE

- **HISTORY:** 64 yo with abdominal pain after TACE via right femoral artery access
- **IMAGING:**
 - Post-contrast CT: No active extravasation. Higher density fluid within the right abdomen concerning for hemoperitoneum
 - Metallic closure device (arrowhead) superficial to the expected location of the femoral artery with interposed hematoma
 - Angiography showing access site. Hemorrhage from a combination of high femoral access and failed closure device
- **TREATMENT:** Monitor for stability, if active hemorrhage then may require endovascular stenting or open repair
Spontaneous bleeds

• “Spontaneous bleeds” are largely a misnomer
 • Usually anticoagulation related, with risk of bleeding proportional to the degree of anticoagulation
 • Anticoagulation most commonly causes hemorrhage into the retroperitoneum/psoas or rectus muscles, but occasionally results in hemoperitoneum

• Truly spontaneous hemoperitoneum is rare
 • Must exclude rupture of occult neoplasm

Patient with portal vein thrombosis (arrowhead) treated with TIPS/declot and anticoagulation who presents with sudden RUQ pain, no reported trauma. Large hematoma (arrow) with rupture into the perihepatic space.
Case 11: Pain and right abdominal bruising

HISTORY: 61 yo with chronic abdominal pain and diarrhea on low-molecular weight heparin for atrial fibrillation. Acute onset abdominal pain and hypotension

IMAGING:
- Post-contrast CT: **Right rectus hematoma** extending into the anterior pelvis (top left) and a second intrapelvic collection with layering dependent high density (bottom left)
- Angiography demonstrating active extraperitoneal hemorrhage (orange arrows)

TREATMENT: Conservative management with stabilization. Consider reversing anticoagulation. Angiography can be utilized for diagnostic and therapeutic purposes
Bleeding masses

• Spontaneous hemoperitoneum in the absence of trauma, instrumentation, or anticoagulation therapy is rare

• In such cases, a ruptured neoplasm must be excluded
 • Either primary or metastatic tumor can rupture and bleed into the peritoneal cavity but highly vascular masses more commonly bleed

• Primary masses:
 • Most common primary lesions to cause hemoperitoneum are liver and renal
 • Rupturing splenic masses are more rare than hepatic or renal
 • Etiologies: Hemangiomatosis, angiosarcoma, leukemia, or lymphoma

• Metastatic masses:
 • Spontaneous rupture is rare but can cause massive hemoperitoneum
 • Most common: Lung carcinoma, renal cell carcinoma, and melanoma
Renal masses

• Most common spontaneously hemorrhaging mass is a benign or malignant neoplasm (61%)
 • Most common: Angiomyolipoma (29%)
 • Second most common: Renal cell carcinoma (26%)

• Angiomyolipoma
 • Associated with tuberous sclerosis
 • <4cm: usually watch
 • ≥4cm: prophylactic embolization due to risk of hemorrhage
Case 12: Flank pain

• **HISTORY**: 61 yo with acute onset left flank pain

• **IMAGING**:
 - Post-contrast CT: Fat containing lesion in the inferior left kidney (arrow)
 - Surrounding hemorrhage in the perinephric space and layering in the left paracolic gutter (orange arrows), consistent with a ruptured angiomyolipoma (AML)

• **TREATMENT**: Stabilization of the patient. Endovascular embolization or resection is also a possibility, either emergently or if the lesion is ≥4cm
Hepatic masses

- Hepatocellular carcinoma (HCC)
 - Most common cause of atraumatic hemoperitoneum in male patients of all ages;
 - Nearly 15% incidence of rupture*
 - Large or peripherally located tumors without normal overlying tissue are at a higher risk for rupture

- Hepatic adenoma
 - Benign liver tumor associated with increased estrogen
 - More common in females and those on oral contraceptives
 - Avidly enhance and can contain fat

- Cavernous hemangioma
 - Few cases of hemorrhage and spontaneous rupture and hemorrhage of these lesions reported
 - Giant hemangiomas > 10 cm more likely to rupture, particularly with trauma or during pregnancy

Case 13: Acute RUQ pain

- **HISTORY:** 55 yo with hepatitis C and cirrhosis. Acute right upper quadrant abdominal pain

- **IMAGING:**
 - Post-contrast CT: Enhancing exophytic hepatic mass (arrow) with focal rupture of the overlying capsule, and surrounding perihepatic hemorrhage, consistent with ruptured hepatocellular carcinoma

- **TREATMENT:** Stabilization of the patient and observation. Endovascular embolization or hepatic resection if unstable. Treatment of the HCC after resolution of acute condition
Case 14: Acute RUQ pain

• **HISTORY:** 31 yo on oral contraceptives with acute right upper quadrant abdominal pain

• **IMAGING:**
 - Post-contrast CT: Enhancing hepatic mass (arrows) with capsule rupture (orange arrow) and surrounding perihepatic hemorrhage, consistent with ruptured hepatic adenoma and hemoperitoneum
 - In- and out-of-phase MRI: Multiple additional lesions with signal dropout, consistent with smaller, fat containing hepatic adenomas

• **TREATMENT:** Initial stabilization of the patient. Endovascular embolization or hepatic resection to stop active bleeding. Definitive treatment is hepatic resection due to high risk of future bleeding.
Conclusions

- Abdominal and pelvic hemorrhage are important causes of morbidity and mortality in the setting of both traumatic and atraumatic cases.

- The radiologist should be able to convey emergent findings and recommend appropriate additional imaging.

- Accurate identification of abdominal and pelvic hemorrhage and concise description of associated injury can help guide patient care.
References

Contact: eugene.huo@ucsf.edu