Outcomes of Cochlear Implantation in Pediatric Patients with Asymmetric Hearing Loss

Susan M. Gibbons, Au.D.

Elizabeth Erickson-O’Neill, Au.D., Jennifer Harris, Au.D., Margaret Kenna, M.D., M.P.H., Amanda Griffin, Au.D., Ph.D., Greg Licameli, M.D., MHCM
Almost there...
Disclosures

• None
What We Know About AHL

- Understanding in noise
- Localization of sounds
- Academic difficulties
- Social difficulties
- Behavioral difficulties

Cadieux et. al (2013); Firzst et. al (2012); Cho Lieu et. al (2004); Culbertson et. al (1986); Bess et. al (1984).
Current FDA Criteria for Cochlear Implantation

Candidate

Not a Candidate
Our Project

• Retrospective chart review

• Of 706 patients implanted since 1995, 13 children with asymmetric hearing loss were identified
 • Implanted between 1999-2015
 • 7 of 13 subjects had speech testing using same measures
Subjects

- Average age at surgery = 8 years (range: 1-17 years)
- Average duration of deafness = 40 months (range: 1-96 months)
- Most common etiology was EVA

Etiology of Hearing Losses

- EVA: 54%
- CMV: 23%
- Other (connexin, Noonan, Meningitis): 15%
- Unknown: 8%

Duration of Deafness Prior to CI

- Average age at surgery = 8 years (range: 1-17 years)
- Average duration of deafness = 40 months (range: 1-96 months)
- Most common etiology was EVA
Subjects

Non-implanted/Better-Ear Hearing Thresholds
Compliance Results

All subjects

1 subject

1 subject
Post-operative Performance Testing

<table>
<thead>
<tr>
<th>Subject (Test)</th>
<th>HA only</th>
<th>CI only</th>
<th>HA + CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CNC</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>4 CNC</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5 CNC</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>9 CNC</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>13 CNC</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>10 W-22</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>3 NU-6</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>
Post-operative Performance Testing

<table>
<thead>
<tr>
<th>Subject (Test)</th>
<th>HA only</th>
<th>CI only</th>
<th>HA + CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 CNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 CNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 CNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 CNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 W-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 NU-6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Correct
Post-operative Performance Testing

<table>
<thead>
<tr>
<th>Subject (Test)</th>
<th>Percent Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CNC</td>
<td>51</td>
</tr>
<tr>
<td>4 CNC</td>
<td>93</td>
</tr>
<tr>
<td>5 CNC</td>
<td>151</td>
</tr>
<tr>
<td>9 CNC</td>
<td>9</td>
</tr>
<tr>
<td>10 W-22</td>
<td>110</td>
</tr>
<tr>
<td>3 NU-6</td>
<td>109</td>
</tr>
</tbody>
</table>

- HA only
- CI only
- HA + CI
Post-operative Performance Testing
Bimodal Benefit

Percentage Point Improvement with Addition of Cl

<table>
<thead>
<tr>
<th>Subject (Test)</th>
<th>CNC</th>
<th>CNC</th>
<th>CNC</th>
<th>CNC</th>
<th>CNC</th>
<th>W-22</th>
<th>NU-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing to the Literature…

✓ All subjects showed improvement bimodally in quiet (Firzst et al., 2012, Cadieux et al., 2013)

✓ Majority of subjects wear their CI full-time (Sadadcharam et al., 2016, Mertens et al., 2015)
Adult abilities in noise improved following CI, but only after a longer period of time (Mertens et al., 2015)
Limitations

- Small and heterogeneous sample
- Limited pre-operative speech testing due to age
- Not all data accessible in medical records
- Variety of speech tests used across and within subjects
Moving Forward

• Include more challenging/real-world testing in clinic protocols (*think beyond just word recognition*)

• Consider earlier implantation for these asymmetric hearing loss patients

• Using a larger dataset identify:
 – patient factors that may predict use/non-use
 – specific challenges faced in this population
Boston Children’s Hospital
Cochlear Implant Team

Physicians
• Greg Licameli, MD, MHCM, Director
• Jacob Brodsky, MD
• Margaret Kenna, MD, MPH
• Dennis Poe, MD

Audiologists
• Susan Gibbons, AuD
• Jennifer Harris, AuD
• Ashleigh Lewkowitz, AuD
• Marilyn Neault, PhD
• Elizabeth Erickson O’Neill, AuD
• Rebekah Tozer, AuD

Director of Audiology Research
• Amanda Griffin, AuD, PhD

Speech-Language Pathologists
• Jennifer Johnston, EdD
• Denise Fournier Eng, MA

Psychologists
• Terrell Clark, PhD
• Peter Isquith, PhD
• Amy Szarkowski, PhD

Outreach & Support Services
• Katie Prins, MBA

Educational Audiologist
• Lauralyn Chetwynd, AuD
• Christine MacDonald, AuD

Program Coordinator
• Sarah Thomas, MHA

Audiology Assistant
• Jill Rosoff, BA
Thank You!
References