Premalignant and Malignant Non-Melanoma Skin Cancer

Elise Grgurich, D.O. and Lanny Dinh, D.O.
Lehigh Valley Health Network/PCOM
Department of Dermatology
American Osteopathic College of Dermatology
March 6, 2017
No Disclosures
Objectives

• Briefly review disease pathogenesis, presentation, and treatment options

• Discuss updates in the literature in regard to the various premalignant and malignant lesions

• Introduce ongoing research and future studies in the field of non-melanoma skin cancers
Premalignant Lesions
Actinic Keratosis

- Most common precancerous lesion
 - Can progress to SCC
 - 0.1-0.6% per lesion-year
- Treatment options:
 - Cryotherapy
 - Topical treatments:
 - 5-Fluorouracil (0.5-5%)
 - Imiquimod 5% cream
 - Ingenol mebutate
 - Diclofenac
- Photodynamic therapy
- Destructive/Surgical management
• 5-FU, imiquimod, ingenol mebutate and diclofenac are similarly efficacious but have different adverse effects and cosmetic outcomes
• Use dependent on patient preferences, prior physician and patient experience, and cost
Actinic Keratosis

Original Investigation
September 2015

Long-term Efficacy of Topical Fluorouracil Cream, 5%, for Treating Actinic Keratosis
A Randomized Clinical Trial

Hyemin Pomerantz, MD2, Daniel Hogan, MD2, David Ellers, MD1; et al

Author Affiliations

• Single course of 5% fluorouracil cream effectively reduces AK counts and need for spot treatment for longer than 2 years
• Fewer hypertrophic AKs in the treatment group at 6 months
Malignant lesions
Basal Cell Carcinoma

• Most common type of skin cancer
 – 2 million Americans affected every year
• Metastasis is extremely rare
 – 0.0028-0.55% metastatic rate
 – 50% of deaths from BCC result from direct extension into vital structure rather than metastases
Basal Cell Carcinoma

• Pathogenesis
 – Arise from pluripotent cells associated with hair follicle
 – Mutations that activate hedgehog signaling pathway → cell growth
 • Sonic hedgehog
 • Patched 1 - most common
 • Smoothened
Basal Cell Carcinoma

• Pathogenesis
 – Arise from pluripotent cells associated with hair follicle
 – Mutations that activate hedgehog signaling pathway → cell growth
 • Sonic hedgehog
 • Patched 1 - most common
 • Smoothened
Basal Cell Carcinoma

• Pathogenesis
 – Arise from pluripotent cells associated with hair follicle
 – Mutations that activate hedgehog signaling pathway → cell growth
 • Sonic hedgehog
 • Patched 1 - most common
 • Smoothened
Basal Cell Carcinoma

• Pathogenesis
 – Arise from pluripotent cells associated with hair follicle
 – Mutations that activate hedgehog signaling pathway → cell growth
 • Sonic hedgehog
 • Patched 1 - most common
 • Smoothened
Basal Cell Carcinoma

• Treatment options:
 – Surgical
 • Excision
 • Mohs Micrographic surgery (MMS)
 • Curettage and electrodessication
 – Radiation
 – Topical treatments: Imiquimod, 5-FU
 – Hedgehog pathway inhibitors (HPIs)
Basal Cell Carcinoma

• Treatment options:
 – Surgical
 • Excision
 • Mohs Micrographic surgery (MMS)
 • Curettage and electrodessication
 – Radiation
 – Topical treatments: Imiquimod, 5-FU
 – Hedgehog pathway inhibitors (HPIs)
 • Vismodegib (2012) and sonidegib (2015)
Basal Cell Carcinoma

• Follow up of 104 patients with locally advanced or metastatic BCC from the pivotal ERIVANCE study
• Median duration of vismodegib exposure was 12.9 months
• Increased response rates
 – Metastatic disease - 30.3% to 33.3%
 – Locally advanced – 42.9% to 47.6%
• Median duration of response improved from 7.6 – 9.5 months for locally advanced disease
• No change in side effect profile or new emerging safety signals

Original article
Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC

Aleksandar Sekulic, MDa, Michael R. Migden, MDb, Karl Lewis, MDc, John D. Hainsworth, MDd, James A. Solomon, MD, PhDe,9, Simon Yoo, MDd, Sarah T. Arron, MD, PhDd, Philip A. Friedlander, MD, PhDe,9, Eileen Marmur, MDd, Charles M. Rudin, MD, PhDd, Anne Lynn S. Chang, MDm, Luc Dirix, MD, PhDd, Jeannie Hou, MDd, Huibin Yue, PhDd, Axel Hauschild, MDd, on behalf of the ERIVANCE BCC Investigators
Basal Cell Carcinoma

• 8 articles (704 patients) systematically reviewed to evaluate clinical experience with hedgehog pathway inhibitors

• Vismodegib
 – Significant, consistent effect on locally advanced and metastatic BCC
 – Superior responses for metastatic BCC compared to traditional treatment

• Not enough data to review sonidegib since its approval in 2015
Basal Cell Carcinoma

• Treatment options:
 – Surgical
 • Excision
 • Mohs Micrographic surgery (MMS)
 • Curettage and electrodessication
 – Radiation
 – Topical treatments: Imiquimod, 5-FU
 – Hedgehog pathway inhibitors (HPIs)
 • Vismodegib (2012) and sonidegib (2015)
 • Itraconazole
Fig. 1. Actions of vismodegib, itraconazole and sonidegib on hedgehog pathway.
Basal Cell Carcinoma

• 29 patients enrolled in open-label study
 – Cohort A: 200mg twice daily x 1 month
 – Cohort B: 100mg twice daily x 2.5 months
• Reduced tumor size and promoted re-epithelialization in 8 patients
• None of the BCCs completely cleared
• Average tumor reduction with lower dosage (Cohort B) was comparable to higher dosage (Cohort A)
Squamous Cell Carcinoma (SCC)

• Second most common skin cancer in the United States
• 700,000 cases annually
Squamous Cell Carcinoma

<table>
<thead>
<tr>
<th>Stage</th>
<th>Union for International Cancer Control (UICC) 2010</th>
<th>Brigham and Women’s Hospital (BWH) 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Tumor ≤2 cm in greatest dimension</td>
<td>0 high-risk factors*</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor >2cm in greatest dimension</td>
<td>0 high-risk factors*</td>
</tr>
<tr>
<td>T2a</td>
<td></td>
<td>1 high-risk factors*</td>
</tr>
<tr>
<td>T2b</td>
<td></td>
<td>2-3 high-risk factors*</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor with invasion of deep structures (muscle, cartilage, bone)</td>
<td>≥4 high-risk factors* or bony invasion</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor with invasion of axial skeleton or direct perineural invasion of skull base</td>
<td></td>
</tr>
</tbody>
</table>

* BWH high-risk factors: tumor diameter ≥2cm, poorly differentiated histology, perineural invasion ≥0.1mm, tumor invasion beyond fat
Squamous Cell Carcinoma

- National comprehensive cancer network (NCCN) high-risk features:
 - Tumor location - mucosal surfaces, genitalia, periorbital, nose, lips, chin, ears, temples, sites of prior burn scars or radiation
 - Tumor diameter ≥2cm
 - Tumor depth ≥2mm (Clark level ≥IV)
 - Perineural invasion
 - Lymphovascular invasion
 - Poorly differentiated histopathology
 - Immunosuppression
 - Solid organ transplant (particularly kidney) > bone marrow transplant
Squamous Cell Carcinoma

• National comprehensive cancer network (NCCN) high-risk features:
 – Tumor location- mucosal surfaces, genitalia, periorbital, nose, lips, chin, ears, temples, sites of prior burn scars or radiation
 – Tumor diameter ≥2cm
 – Tumor depth ≥2mm (Clark level ≥IV)
 – Perineural invasion
 – Lymphovascular invasion
 – Poorly differentiated histopathology
 – Immunosuppression
 • Solid organ transplant (particularly kidney) > bone marrow transplant
Squamous Cell Carcinoma

• Additional management considerations for high risk SCC:
 – Sentinel lymph node biopsy (SLNB)
 • 2015 meta-analysis recommends considering SLNB for patients with T2 lesions
 – Radiographic imaging to assess disease burden for high risk patients
 • CT, MRI, PET
 – Biomarkers for characterization of aggressive SCC
 • Matrix-metalloproteinases, p300, nuclear IKK
Squamous Cell Carcinoma

• Immunotherapy for metastatic SCC
 – Metastatic SCC has elevated expression of epidermal growth factor receptor (EGFR)
 • Cetuximab - EGFR inhibitor
 • Pantimumab - monoclonal antibody against EGFR
 – Combination therapy of cetuximab, fluorouracil, carboplatin, or cisplatin
 – PD-1 inhibitors
 – CTLA-4 inhibitor
Squamous Cell Carcinoma

- Chemoprevention
 - 2 or more NMSC + 10 or more AKs
 - Acitretin – 0.2-0.4mg/kg/day
 - 4 month up taper
 - CBC, CMP, lipids, LFTs q3mo
 - Continued indefinitely
 - Nicotinamide (niacinamide or nicotinic acid) – 500mg BID
 - 23% fewer people had NMSC
 - Lower side effect profile and no lab monitoring
Cutaneous T-Cell Lymphoma

- T cell non-Hodgkin’s lymphomas
- Average of 6 years from presentation to diagnosis
 - Clinically and histopathologically can resemble benign inflammatory disorders including psoriasis and atopic dermatitis
Cutaneous T-Cell Lymphoma

- High-throughput TCR sequencing (HTS) detected T cell clones in 46/46 CTCL patients
 - More sensitive and specific than TCRγ PCR
 - Successfully discriminated CTCL from benign inflammatory diseases
 - Demonstrated hematogenous spread of small numbers of malignant T cells in patients with new skin lesions
Cutaneous T-Cell Lymphoma

- High-throughput TCR sequencing (HTS)
 - Accurately assessed responses to therapy and facilitated diagnosis of disease recurrence
 - Diagnosed CTCL in all stages
 - Provided insights into the cell of origin and location of malignant CTCL cells in skin
Cutaneous T-Cell Lymphoma

• Largest cohort of patients with advanced MF/SS from 29 international sites
• 1,275 patients
• Identifies prognostic values to help stratify advanced-stage patients
Cutaneous T-Cell Lymphoma

- Independent poor prognostic markers for stage IV:
 - Increasing age > 60
 - Elevated LDH
 - Large cell transformation in the skin as independent poor prognostic markers
Cutaneous T-Cell Lymphoma

- Interleukin (IL-31), Th2 cytokine
 - Increased in serum of CTCL patients
- Found in IL-31 may play a role in CTCL pruritus by exerting indirect effects on sensory nerves through epidermal neoplastic T cells and keratinocytes to transmit itch
Merkel Cell Carcinoma

- Neuroendocrine carcinoma
- Linked to UV exposure and Merkel cell polyomavirus
- In the United States, the age-adjusted incidence is estimated at 0.24 per 100,000 person-years

Merkel Cell Carcinoma

Review of Treatment

- Wide local excision is the mainstay of tx (NCCN) + SLN
- Immunotherapy with PD-1/PD-L1 inhibitors is a promising treatment option for advanced or metastatic disease
- Clinical trials are currently in progress to further evaluate these novel therapeutic agents
Merkel Cell Carcinoma

- A case of metastatic MCC with a significant response to nivolumab — humanized IgG4 monoclonal PD-1 inhibitor
Merkel Cell Carcinoma

Fig. 1 Baseline and repeat FDG-PET/CT scan illustrating areas of FDG uptake. Legend: a, b and c Baseline FDG-PET/CT scan revealed hypermetabolic activity consistent with metastatic disease. d, e and f Repeat FDG-PET/CT scan following cycle 5 of nivolumab demonstrated significant decrease in size and FDG uptake of all sites of disease.
Merkel Cell Carcinoma

- 26 adults with advanced Merkel-cell carcinoma without previous systemic treatment
- Pembrolizumab, PD-1 inhibitor, dosed at 2mg/kg for 3 weeks
- Objective response rate was 56%, 4 patients had a complete response, and 10 had a partial response
Summary

• Topicals remain a viable option for chemoprevention and treatment of AKs

• Hedgehog pathway inhibitors, especially itraconazole, continue to be studies for advanced BCC

• Staging for invasive SCC continues to be utilized to help determine prognosis

• High throughput sequencing is a new diagnostic tool for CTCL

• PD-1 inhibitors may be a potential treatment option for MCC in the future
References (AKs and BCC)

References (SCC)

References (EMPD)

• Azmahani, Abdullah et al. Androgen receptor, androgen-producing enzymes and their transcription factors in extramammary Paget disease. Human Pathology. 46(11), 1662 - 1669.

• Plaza, Jose et al. HER-2/neu expression in extramammary Paget disease: A clinicopathologic and immunohistochemistry study of 47 cases with and without underlying malignancy. Journal of Cutaneous Pathology. 2009. 36(7), 729-733.

References (MPD)

References (CTCL)

Thank You

• Stephen Purcell, D.O.
• Tanya Ermolovich, D.O.
• Resident Team
 – Veronica Rutt, D.O.
 – Kelly Quinn, D.O.
 – Carl Barrick, D.O.
 – Claire Dorfman, D.O.