Regulatory Challenges in Apheresis
Global Perspectives - Cell Therapy

Joseph (Yossi) Schwartz, MD, MPH
Director, Transfusion Medicine & Cellular Therapy
Columbia University Medical Center
New York Presbyterian Hospital
New York, NY
Objectives

1. Describe the different global cell therapy standards
2. Can we align those standards?
3. How can we comply with cell therapy standards – case scenarios
Cell Therapy Standards

<table>
<thead>
<tr>
<th>Organization</th>
<th>Accreditation Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABB</td>
<td>Two years</td>
</tr>
<tr>
<td>FACT</td>
<td>Three years</td>
</tr>
<tr>
<td>JACIE</td>
<td>Four years</td>
</tr>
<tr>
<td>FDA</td>
<td>Interval not set</td>
</tr>
<tr>
<td>WMDA</td>
<td>Five years</td>
</tr>
</tbody>
</table>
JACIE Accredited Facilities
Worldwide Location of Unrelated Donor Registries

Petersdorf EW, BMT, 45, 807–8 (2010)
• WMDA fosters international collaboration to facilitate the exchange of high quality haematopoietic stem cells for clinical transplantation worldwide and to promote the interests of donors.

- Global standards cover all aspects of unrelated hematopoietic stem cell cell registry operations.
• NMDP Standards set forth basic guidelines and requirements for programs working with the NMDP.
• Standards encompass network participation criteria with requirements for transplant hospitals, recruitment centers, product collection centers, etc.
• Standards for the donation process; product collection, storage, transportation, processing and labeling; adverse events, complaints and non-conforming products.
Can We Align It All Together?
AHCTA mission statement:

…the above named organizations commit themselves to the harmonization of their respective standards with the objective of creating a single set of quality, safety and professional requirements for cellular therapy…
Comparison of Donor Standards
The tables are populated with data from the FACT-JACIE, Netcord-FACT, WMDA and AABB Standards

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMDA International Standards for Unrelated Hematopoietic Stem Cell Donor Registries Version 2014</td>
<td>W</td>
</tr>
<tr>
<td>FACT-JACIE International Standards for Cellular Therapy Product Collection, Processing and Administration5th Edition</td>
<td>F-J</td>
</tr>
<tr>
<td>Netcord-FACT International Standards for Cord Blood Collection, Banking and Release for Administration5th Edition</td>
<td>NC-F</td>
</tr>
<tr>
<td>AABB Standards for Cellular Therapy Services 6th Edition</td>
<td>AA</td>
</tr>
<tr>
<td>Cord Blood Bank</td>
<td>CBB</td>
</tr>
<tr>
<td>Requirement is addressed in standards</td>
<td>X</td>
</tr>
<tr>
<td>Requirement is not addressed in standards</td>
<td>-</td>
</tr>
<tr>
<td>REQUIREMENTS</td>
<td>W</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>consequences of not donating to the potential recipient</td>
<td></td>
</tr>
<tr>
<td>Obtained by licensed physician or other health care provider familiar with the</td>
<td>X</td>
</tr>
<tr>
<td>collection procedure</td>
<td></td>
</tr>
<tr>
<td>Minor consent obtained from parents or legal guardian according to applicable</td>
<td>X</td>
</tr>
<tr>
<td>laws and regulations</td>
<td></td>
</tr>
<tr>
<td>Consent and authorization from donor in advance to releasing health</td>
<td></td>
</tr>
<tr>
<td>information to transplant physician and recipient as appropriate</td>
<td></td>
</tr>
<tr>
<td>Provision of documentation of consent to collection staff prior to the</td>
<td>X</td>
</tr>
<tr>
<td>collection procedure</td>
<td></td>
</tr>
<tr>
<td>Mother donating cord blood informed to contact CBB if infant donor develops</td>
<td></td>
</tr>
<tr>
<td>serious disease post donation</td>
<td>-</td>
</tr>
<tr>
<td>Donor Suitability Requirements</td>
<td></td>
</tr>
<tr>
<td>Established criteria and evaluation procedures to protect the safety of the</td>
<td>X</td>
</tr>
<tr>
<td>donor</td>
<td></td>
</tr>
<tr>
<td>Abnormal findings during workup reported to prospective donor with</td>
<td></td>
</tr>
<tr>
<td>recommendations for follow-up care</td>
<td></td>
</tr>
<tr>
<td>Evaluation to include potential risks of the collection procedure.</td>
<td></td>
</tr>
<tr>
<td>Potential risks shall include where relevant:</td>
<td></td>
</tr>
<tr>
<td>Possible need for venous access</td>
<td>X</td>
</tr>
<tr>
<td>Mobilization</td>
<td>X</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>X</td>
</tr>
<tr>
<td>Donor Evaluation for Transmissible Disease (Eligibility)</td>
<td></td>
</tr>
<tr>
<td>Procedures in place for evaluation of risk of disease transmission from donor</td>
<td>X</td>
</tr>
<tr>
<td>products</td>
<td></td>
</tr>
</tbody>
</table>

Donor standards version Dec 13-2013
Page 3/8
Case 1 – Healthy Allo Donor

• 8 yo HLA-matched sibling donor, sickle trait
• PMH: Non significant
• Physical Exam: No major concerns
• Plan: G-CSF 10 µg/kg/d; HPC collections by Apheresis on day 4&5 of G-CSF

? Considerations for G-CSF & Apheresis ?
Standard (1)

 living allogeneic and autologous donors shall be evaluated for the risk of hemoglobinopathy before the administration of G-CSF

Rationale behind?

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>W</th>
<th>F-J</th>
<th>NC-F</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factors evaluated by medical history, physical examination, examination of relevant medical records, and laboratory testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of risk of hemoglobinopathy</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
SDF-1/CXCL12, secreted by BM stromal cells, binds to CXCR4 ligand, expressed on CD34+ HPCs
G-CSF Induced Mobilization

From Lapidot and Petit, Experimental Hematology 2002;30:973-981
Mechanism of Action for Mobilization

G-CSF Vs. AMD3100 (Mozobil)

G-CSF Complications in Sickle Cell Disease

- G-CSF can cause vaso-occlusive crisis with in pts with Hgb S/S, S/C or S/β thal

- 11 case reports of G-CSF use in SCD. 7 require hospitalization, while 4 others experienced no complications

- Multi-organ failure & death in one previously asymptomatic 47 yo donor with Hgb S/C

- Crises might be related to acute ↑ PMN and PMN activation

References:

Are Donors With Sickle Trait (Hb AS) at Increased Risk from G-CSF?

- Donors with sickle trait were safely mobilized and collected.
- The sickle trait donors did have higher symptom score than control donors.
- There were no symptoms suggestive of sickle crisis.
- No difference in CD34 yield or in apheresis and processing procedures.
- The risk is limited.

Kang et al, Blood 2002;99:850
FACT/AABB Standards: living allogeneic and autologous donors shall be evaluated for the risk of hemoglobinopathy before the administration of G-CSF.

There shall be written documentation of an interim assessment of donor suitability for the collection procedure performed by a qualified person immediately prior to each collection procedure.

Rationale behind?
Case 2

• You are evaluating a 45 yo donor who is to donate G-CSF -Mobilized PBSC for her HLA matched sibling with AML.
• She already had 5 days of G-CSF and is about to start the collection
• Complaints of new abdominal pain with radiation to the left shoulder

What are the concerns for this donor?
G-CSF and The Spleen

Splenic Enlargement:
- Spleen size has been studied in over 100 healthy HPC, Apheresis donors
- In almost all donors: spleen volume and length increases 10-13% on average
- Begins to reverse quickly with a return to baseline within 10 days after completion of G-CSF
- Due to extramedullary hematopoiesis
- 🚨🚨 donor risk for splenic rupture

Stroncek et al, Transfusion 2003;43:609 Platzbecker et al, Transfusion 2001;41:184
G-CSF and The Spleen

Splenic Rupture:

- 11 cases of Splenic rupture reported to date in adult donors of HPC, Apheresis\(^1\) (5 auto, 6 allo donors)
- The incidence is estimated to be 1:5,000 - 1:10,000\(^2\)
- Splenic rupture has not been reported in children
- Histologic examination of the ruptured spleen: massive extramedullary hematopoiesis & subcapsular bleeding

\(^1\)Bone Marrow Transplant 2007;40:361 \(^2\)Pediatr Blood Cancer 2006;46:422
Splenic Rupture

Common signs and symptoms:

- Nausea, malaise
- Pain radiating to left shoulder
- ↓ Blood Pressure
- ↓ Hematocrit

- Can happen anytime after initiation of G-CSF
 - most common between D5-10

Dincer et al. J Ped Hematol Oncol 2004; 26:761
Additional Serious Adverse Events Related to G-CSF

- **Vascular events**: MI, increase anginal episodes, CVA
- **Flare of autoimmune disease**: RA, AS, SLE, MS, Scleroderma, thyroid dysfunction (preexisting Antithyroid Abs)
- **Eye inflammatory responses**: keratitis, episcleritis, iritis

- Careful screening of history
- Risk versus benefit
- Interim assessment of complaints

Bone Marrow Transplantation 2007;39:577 JCA 2006;21:116
FACT Standard **C8.5** & AABB standard **5.13.1**: There shall be written documentation of an interim assessment of donor suitability for the collection procedure performed by a qualified person immediately prior to each collection procedure.
Standard (3)

 - A complete blood count, including platelet count, shall be performed within 24 hours prior to each HPC collection by apheresis.

C8.5.2: There shall be peripheral blood count criteria to proceed with collection.

Rationale behind?
Case 3: Platelets & HPC, Apheresis collection

- 29 yo healthy male sibling donor mobilized with G-CSF 10 µg/kg/d
- Apheresis d4 G-CSF: 12 L; heparin + ACD-A → temp 40°C at procedure end; hospitalized
- Collection yield: 4.5 x 10^6 CD34+ cells/kg
- Fever resolved; no source identified
- F/U apheresis d10 after 1st collection for DLI: severe platelet clumping noted → abort
Post Collection Donor Issues

Platelets

- Each collection, a donor loses \(\sim 4 \times 10^{11} \) plt
- G-CSF can cause ↓ Plt count (usually mild)
- After one collection: Plt count ↓ \(\sim 30\% \)

Table 2 Changes in peripheral blood cell counts during G-CSF administration and after apheresis session

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>basal</td>
<td>day 5</td>
<td>post apheresis</td>
</tr>
<tr>
<td>WBC</td>
<td>5.5 (3.9–12.3)</td>
<td>56 (37–75)*</td>
<td>—</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>1.9 (1.7–4.3)</td>
<td>4.4 (2.1–14.6)*</td>
<td>—</td>
</tr>
<tr>
<td>Platelets</td>
<td>228 (161–286)*</td>
<td>207 (155–328)*</td>
<td>137 (96–198)</td>
</tr>
</tbody>
</table>

Hematology Am Soc Hematol Educ Program 2005:469
Platelets loss – Autologous Collections

Platelets loss – Allogeneic Collections

Post Collection Donor Issues Platelets (cont.)

- After 2 collections, plt <100,000 in 20-23% of donors
- Delayed plt recovery: start to rise only ≥ 2 days; return to baseline 7-10 days post collection
- Donors with low platelet counts are at potential risk from bleeding and remain at risk for up to 1 week
- Always consider other/additional cause e.g. Heparin Induced Thrombocytopenia

Being Compliant w/the Standard (3)

- FACT standard C8.5.1 & AABB 5.12.4:

 A CBC, including platelet count, shall be performed within 24 hours prior to each HPC collection by apheresis.

- C8.5.2: There shall be peripheral blood count criteria to proceed with collection.
Conclusions

• Cellular therapy standards ensure high quality products
 - standardize processes related to collection, processing & administration

• The different sets of the standards have similarities
 - Based on scientific literature, clinical practice and regulations

• Understanding the rationale behind the standards can help with compliance
Thank you!