How Much Can We Ask of An Apheresis Donor?

ASFA 2017
Francis S. Morrison Memorial Lectureship

Susan F. Leitman, MD
Department of Transfusion Medicine
National Institutes of Health
Bethesda, MD
Francis S. Morrison, MD
Accomplished Scholar & Clinical Investigator

- Research trainee in Hematology, Blood Research Laboratory, NEMC, Boston (Dameshek)
- Research Medical Officer, LCDR, USN, Naval Blood Research Laboratory, Chelsea, MA
- Medical Research Council Experimental Haematology Research Unit, St. Mary's Hospital, London

ORIGINAL ARTICLE

Post-Transfusion Purpura

Lieutenant Commander Francis S. Morrison, (MC), USN, and P. L. Mollison, M.D.

- Professor of Medicine, U of Mississippi Medical Center
- SWOG trials of leukemia, benign and malignant hematology, red cell and platelet collection & storage
Francis S. Morrison, MD

- A “character” - a bear of a man with a commanding baritone voice, a courtly Southern bearing
- Twinkling sense of humor
- Long-time member of the ASFA Board of Directors
- President of ASFA 1991
- Down-to-earth, common sense approach to problems
- Great organizational skills, a strong sense of dignity and purpose, which he brought to ASFA
How Much Can We Ask of an Apheresis Donor?

Cytapheresis Donors - 24 times yearly

- Serial plateletpheresis donors
- Serial leukapheresis donors
- Serial granulocytapheresis in steroid/cytokine-stimulated donors
- Large volume leukapheresis in MNC or PBSC donors
Potential Long Term Risks of Serial Cytapheresis

Cell removal
• Effects on blood cell counts

Citrate administration
• Effects on calcium homeostasis and bone mineralization

Dexamethasone administration
• Effects on cataract formation
NIH: Two Retrospective “Data Mining” Studies

• Analyzed effect of long-term plateletpheresis on donor platelet counts over 4 yr period
 Lazarus et al., Transfusion 2001

• Analyzed effect of long-term leukapheresis on donor lymphocyte counts over 7 yr period
 Kolf et al., Transfusion 2004
Serial Plateletpheresis Donation

- 779 repeat donors → 8,333 cytapheresis procedures
- Frequency: maximum 12 donations/year
- Volume processed: 4-5 liters /procedure
- 10U (1.8 components) collected/procedure
- Instruments: Fenwal Amicus and CS-3000
- Deferral policies:
 - < 150,000 on one visit: defer x 2 months
 - < 150,000 on 2 visits in 12 mos: defer x 6 months
 - < 100,000: medical review

Lazarus et al. Transfusion 2001
Non-Transient Decreases in Platelet Counts in Serial Plateletpheresis Donors

- Mean decrease between 1st and last PC correlated with cumulative number of donations (p<0.0001)
Neither Sex nor Age of Donor Affected Platelet Count Difference
Frequent plateletpheresis does not clinically significantly decrease platelet counts in donors

Katz et al. Transfusion 2006 (MVRBC)

24-carat donors: 60 donors underwent plateletpheresis 24 x in 1 yr

Pre-apheresis PC known prior to donation.

1.7 components per procedure

12% of donors provided 55% of PLTs
Serial Lymphapheresis Donation

- IRB approved protocol: collect MNC for research use; 1500 procedures/yr
- Frequency: every 21 days
- Volume processed: 2-10 liters/procedure
- Instrument: Fenwal (Amicus or CS-3000 Plus)
- Safety: defer donors for 2 mos if pre-ALC < 0.8 x 10^9/L
- Database: 4,950 donations in 404 donors (6.8L/proc)
 - Mean WBC content 8.4 x 10^9
 - Mean lymph content 5.7 x 10^9 (71%)

Kolf et al. Transfusion 2004
Change from Initial Lymphocyte Counts

Analysis of co-variance for 4 ordered donation groups

Delta from First to Last Lymphocyte Count

- 9.7%
- 24.6%
- 37.3%
- 50.2%
Mean Pre-apheresis Lymphocyte Counts by Donation Number

Lymphocyte Count (10^3/μL)

Donation Number

Mean Pre-apheresis Lymphocyte Counts by Donation Number

- R = 0.9721
- p < 0.0001

Lymphocyte Counts:
- Pre-apheresis: 1.87 ± 0.92

Donation Numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8
Lymphocyte Yield per Liter Processed

R = 0.8695
p < 0.0001
Changes in WBCs, Grans, Monos, Lymphs

- **WBCs**: R=0.098, p=0.387
- **Granulocytes**: R=0.525, p<0.001
- **Monocytes**: R=0.564, p<0.001
- **Lymphocytes**: R=0.972, p<0.001

Donation Number

PRE-COUNT (x10^9/L)
Summary

- Serial plateletpheresis and leukapheresis procedures in healthy donors are associated with sustained and significant decreases in circulating platelet and lymphocyte counts.
- The cumulative number of donations correlates with decreases in counts.
- There is no evidence that these decreases have clinical significance for the donor, particularly if rigorous ongoing review and prudent donor deferral policies are established and followed.
- Prospective monitoring system must be in place with well-defined deferral criteria to ensure donor safety.
Evaluation of Citrate Effects in Long-Term Apheresis Donors

Citrate Effects: Acute
- Decreases ionized calcium
- Compensatory increase in PTH
- Mobilization of Ca from bone, ↑ GI uptake, ↑ renal reuptake
- Net body loss of Ca due to obligate post-apheresis calciuria

Bolan et al, Transfusion 2003
Bone Density in Apheresis Donors – Lab Results

Mean PTH (anabolic and catabolic)

Mean Vitamin D 1,25 (anabolic)

Mean C-Telopeptide (breakdown)

Mean Osteocalcin (re-modelling)
Citrate Effects and Bone Density

• Chronic high PTH \rightarrow osteopenia
• Intermittent, bolus PTH \rightarrow bone remodeling, increased bone density
• Dettke et al, 2003:
 “Apheresis donors with more cumulative life-time donations had more marked decreases in bone density than donors with fewer donations”
Impact of Frequent Apheresis on Bone Mineral Density Cross Sectional Study

• **NIH plateletpheresis donors (n=45)**
 - >50 donations over past 10 years
 - Maximum of 12 donations yearly

• **NIH research leukapheresis donors (n=44)**
 - >50 donations over past 10 years
 - Every 3 wks, maximum 17 donations yearly

• **NIH whole blood donor controls (n=85)**
 - Matched by gender, race, weight

• **ARC plateletpheresis donors (n=20)**
 - > 100 donations over past 10 years
 - Maximum of 24 donations yearly
Bone Density (DEXA) Z-Scores – AP Spine

Z score - # SDs above/below a reference database of individuals of same age, gender, race.

<table>
<thead>
<tr>
<th></th>
<th>APL</th>
<th>ARC</th>
<th>LEUK</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>50</td>
<td>20</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>54</td>
<td>58</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Donations</td>
<td>112</td>
<td>198</td>
<td>107</td>
<td>--</td>
</tr>
</tbody>
</table>
Bone Mineral Density in Apheresis Donors

Femoral Neck

Distal 1/3 Radius

Bolan et al. Transfusion 2005
Special Demands we make in Granulocytapheresis Donors

To maximize circulating granulocyte counts and granulocyte yields, donors are given:

- Hydroxyethyl starch
- Steroids (dexamethasone)
- Filgrastim (rhG-CSF)
Granulocytapheresis Yields vs Marrow Production

<table>
<thead>
<tr>
<th>Donor Preparation</th>
<th>Yield (x 10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No donor preparation</td>
<td>3 - 5</td>
</tr>
<tr>
<td>Hydroxyethyl starch</td>
<td>5 - 9</td>
</tr>
<tr>
<td>Starch + steroid</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Starch + steroid + GCSF</td>
<td>60 - 80</td>
</tr>
<tr>
<td>Daily turnover (steady state)</td>
<td>100</td>
</tr>
<tr>
<td>Daily turnover (stress)</td>
<td>350</td>
</tr>
</tbody>
</table>
Posterior Subcapsular Cataract

- Rare form of age-related cataract (4.5%)
- Central location, in visual axis
- Symptomatic even if small, cause glare, near vision sx
- Major risk factors: age, sun-exposure, & steroids
Cross-sectional Study

• **100 granulocyte donors**: donated grans ≥ 4 x in prior 20 yrs
 – Dexamethasone 8 mg PO 12 hr prior
 – GCSF 480 mcg SC 12-16 hrs prior
 – Hydroxyethyl starch 30 gm IV

• **100 platelet donor controls**: matched for age, sex, cum # cytapheresis donations, ≤ 3 lifetime gran donations

• **Standardized Clinical (CEE) & Photo Grading**
 – Single experienced ophthalmologist
 – U Wisconsin Reading Center (retroillumination lens photos)

• **No exclusion for prior cataract surgery**
Granulocyte donors n=100

Platelet donors (n=100)

ICCE =

14 eyes of 10 donors

5 eyes of 4 donors
Results: Summary

After adjusting for age, odds ratio of PSC in granulocyte donors relative to platelet donors

2.82
95% CI: 0.83-9.61
p = 0.07

Clayton et al. Transfusion 2011
Prevalence of PSC with Increasing Number of Granulocyte Donations

Per donor analysis

<table>
<thead>
<tr>
<th># Gran Don.</th>
<th>0-3</th>
<th>4-9</th>
<th>10-19</th>
<th>≥ 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>1.0</td>
<td>2.25</td>
<td>2.53</td>
<td>3.60</td>
</tr>
<tr>
<td>p</td>
<td>-</td>
<td>0.30</td>
<td>0.21</td>
<td>0.11</td>
</tr>
<tr>
<td>Percent of Donors with PSC</td>
<td>4%</td>
<td>8.6%</td>
<td>9.5%</td>
<td>13%</td>
</tr>
</tbody>
</table>

P for trend: 0.06
Power Analysis

Ability to Detect a Difference in Cataract Frequency with Given Number of Subjects

<table>
<thead>
<tr>
<th>No. donors per group</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power*</td>
<td>28%</td>
<td>58%</td>
<td>78%</td>
<td>89%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Probability, with number of subjects, of detecting a difference in PSC prevalence of 10% in granulocyte and 4% in platelet donors (in 2-sided test of 2-sample proportion tests).
How Much Can We Ask of a PBSC Donor?

Randomized Prospective Study of PBSC Collection: Single 25 L vs Two Consecutive 15 L Procedures

- In order to collect an adequate CD34 cell dose for transplant (2 - 5 x 10^{10} CD34/kg), often need to process large volumes of blood: 3-6 blood volumes (15-30 L) total. Split into 2 consecutive procedures.

- Use of resources: space, personnel, equipment, supplies

- Donor safety, comfort, convenience
CD34 Cell Yield Per Liter Processed as a Function of Preapheresis CD34 Cell Count (NIH data on NMDP donors)

- 80 kg patient
- Desired CD34 dose 6×10^6/kg $= 480 \times 10^6$
- Vol to be processed $= 480 \times 10^6 / 30 \times 10^6$/L $= 16$ L

$R^2 = 0.77$

Vasu et al, Blood 2008
Allogeneic PBSC Collections at NIH

• **Standard LVL**: 15 L processed on days 5, 6 of G-CSF
 - AC ratio 1:13 → citrate rate 1.2 mg/kg/min
 - WBFR 30 - 84 mL/min, duration **3.0 - 8.6 hrs**

• **Review of recent NIH experience**
 - Prophylactic IV CaCl$_2$ → citrate rate ↑ to 2.5 mg/kg/min
 ↑ WBFR to 75-85 ml/min, duration **3 - 3.3 hrs**
 - Day 6 pre-apheresis CD34 counts: 71% of day 5 (65 vs 91/μL)
 - Day 6 CD34 product yields: 80% of day 5 (402 vs 495 x106)

Would a larger procedure on day 5 safely provide similar yields?
CBC, CD34 Monitoring During LVL in Healthy Allogeneic Sibling Donors

25-L LVL Day 5

0 5 10 15 20 25 1hr post

15-L LVL Day 5

0 5 10 15 1hr post

15-L LVL Day 6

0 5 10 15 1hr post

Blood Bag 1 Bag 2
Study Subjects and Apheresis Characteristics

WBFR 75-85 mL/hr, WB:AC ratio 13:1, IV CaCl₂ 0.6 mg per mL ACD-A

<table>
<thead>
<tr>
<th>Procedure</th>
<th>M/F</th>
<th>Wt kg</th>
<th>BV’s/LVL</th>
<th>Citrate mg/kg/min</th>
<th>Duration min</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>25L x 1</td>
<td>4/3</td>
<td>77</td>
<td>4.8</td>
<td>2.0</td>
<td>444</td>
<td>2/7**</td>
</tr>
<tr>
<td>15L x 2</td>
<td>5/2</td>
<td>85</td>
<td>2.7</td>
<td>1.8</td>
<td>638*</td>
<td>0/7</td>
</tr>
</tbody>
</table>

* Day 5 and 6 combined
** Fatigue (n=1), nausea (n=1).

Bolan et al, Brit J Hem 2003
Peripheral Blood CD34 Counts During LVL

Bolan et al, Brit J Hem 2003
Cell Yields

Bolan et al, Brit J Hem 2003
Conclusions

• A single 25L LVL procedure on day 5 of G-CSF mobilization provided the same product yield as two 15L procedures on days 5 and 6.

• The 25L procedure required fewer donor venipunctures and G-CSF administrations, and less total apheresis time, laboratory tests, apheresis kits, clerical work and cell processing and cryopreservation procedures.

• Adverse reactions were more common with 25 rather than 15 L procedures (fatigue, nausea, fluid retention)
How Much Can We Ask of an Apheresis Donor?

• To donate their time and renewable hematopoietic resources
• To tolerate discomfort, inconvenience, and pain
• To engage in prospective clinical trials

As long as we:

• Establish robust systems to monitor clinical and lab data
• Establish and enforce evidence-based policies to prevent or minimize long & short term consequences
• Educate them on the meaning and impact of changes in clinical parameters or lab values that may result
Acknowledgments

<table>
<thead>
<tr>
<th>Dept of Transfusion Medicine Nursing Staff</th>
<th>Dept of Transfusion Medicine Fellows</th>
<th>Dept of Transfusion Medicine Senior Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yu Ying Yau</td>
<td>Charles Bolan</td>
<td>Harvey Klein</td>
</tr>
<tr>
<td>Bonnie Sink</td>
<td>Cathy Cantilena</td>
<td>Harvey Alter</td>
</tr>
<tr>
<td>Janet Browning</td>
<td>Ellen Lazarus</td>
<td></td>
</tr>
<tr>
<td>Julie Hopkins</td>
<td>Hanh Khuu</td>
<td>Bob Wesley</td>
</tr>
<tr>
<td>Phyllis Byrne</td>
<td>Sandhya Panch</td>
<td>Janine Clayton Smith</td>
</tr>
<tr>
<td>De Gladden</td>
<td>Salim Haddad</td>
<td>Rick Childs</td>
</tr>
<tr>
<td>Regina Dowling</td>
<td>Sumi Vasu</td>
<td>Harry Malech</td>
</tr>
<tr>
<td></td>
<td>Cathy Kolf</td>
<td></td>
</tr>
</tbody>
</table>

NIH Collaborators

- Bob Wesley
- Janine Clayton Smith
- Rick Childs
- Harry Malech