Comparison of Transfusion Adverse Events in Children with Sickle Cell Disease (SCD) Receiving Simple or Automated Red Blood Cell Exchange (aRBX) Transfusions for Stroke Prevention

Shannon Kelly, M.D.
Disclosure

• Presented analysis part of larger study funded by Terumo BCT
Stroke Prevention in SCD
Stroke Prevention in SCD

- STOP trial randomized 130 children with a Transcranial Doppler MCA velocity > 200 cm/sec to observation or transfusions

| Transfusions (n=63) | Standard care (n=67) |
Stroke Prevention in SCD

- STOP trial randomized 130 children with a Transcranial Doppler MCA velocity > 200 cm/sec to observation or transfusions

<table>
<thead>
<tr>
<th>Transfusions (n=63)</th>
<th>Standard care (n=67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One infarct</td>
<td>Ten infarcts and one intracerebral hemorrhage</td>
</tr>
</tbody>
</table>
Stroke Prevention in SCD

• STOP trial randomized 130 children with a Transcranial Doppler MCA velocity > 200 cm/sec to observation or transfusions

<table>
<thead>
<tr>
<th>Transfusions (n=63)</th>
<th>Standard care (n=67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One infarct</td>
<td>Ten infarcts and one intracerebral hemorrhage</td>
</tr>
</tbody>
</table>

92% difference in stroke risk (p<0.001)
Stop II → When Can We Stop Transfusions??

- Patients from STOP I (n=79)
 - Chronic transfusions for 30 months
 - Normal TCD, MRI and MRA
 - Randomized to continue or stop transfusions

| 41 patients randomized to stop transfusions | 38 patients randomized to continue transfusions |
Stop II → When Can We Stop Transfusions??

- Patients from STOP I (n=79)
 - Chronic transfusions for 30 months
 - Normal TCD, MRI and MRA
 - Randomized to continue or stop transfusions

41 patients randomized to stop transfusions

2/41 Stroke
14/41 Converted to abnormal TCD

38 patients randomized to continue transfusions

0 Stroke
0 Converted to abnormal TCD
Stop II → When Can We Stop Transfusions??

• Patients from STOP I (n=79)
 – Chronic transfusions for 30 months
 – Normal TCD, MRI and MRA
 – Randomized to continue or stop transfusions

41 patients randomized to stop transfusions

2/41 Stroke
14/41 Converted to abnormal TCD

38 patients randomized to continue transfusions

0 Stroke
0 Converted to abnormal TCD

Study discontinued early

Adams. NEJM 2006 339 (1) 5-11.
Chronic Transfusions in SCD

- SCD patients transfused for stroke prevention → indefinitely committed to chronic transfusions
Chronic Transfusions in SCD

• SCD patients transfused for stroke prevention → indefinitely committed to chronic transfusions

• UCSF Benioff Children’s Hospital Oakland Policy
 – All patients transfused ~ every 4 weeks to maintain target pre-transfusion HbS < 30%
 – Automated exchange preferred for patients transfused for stroke prevention if appropriate IV access available
 – Two peripheral IVs or 11.4F Double lumen Vortex™ Port
 – Automated RBC exchange on COBE Spectra [Spectra Optia since May 2014] with target post transfusion hematocrit ≈ pre transfusion hematocrit
Chronic Transfusions in SCD

• SCD patients transfused for stroke prevention → indefinitely committed to chronic transfusions

• UCSF Benioff Children’s Hospital Oakland Policy
 – All patients transfused ~ every 4 weeks to maintain target pre-transfusion HbS < 30%
 – Automated exchange preferred for patients transfused for stroke prevention if appropriate IV access available
 – Two peripheral IVs or 11.4F Double lumen Vortex™ Port
 – Automated RBC exchange on COBE Spectra [Spectra Optia since May 2014] with target post transfusion hematocrit ≅ pre transfusion hematocrit

• Unique risk / benefit profile for available methods for transfusion (simple vs automated red blood cell exchange, aRBX)
Study Objectives

- Study objective: Compare clinical and adverse outcomes between simple and aRBX

Clinical Outcomes
- Control of HbS
- Hemolysis
- Hospitalizations
- Neurologic Events
 - CVD, TCD

Adverse Outcomes
- Transfusion
- Adverse Events
- Iron Overload
Study Objectives

• Study objective: Compare clinical and adverse outcomes between simple and aRBX

Clinical Outcomes

- Control of HbS
- Hemolysis
- Hospitalizations
- Neurologic Events
 • CVD, TCD

Adverse Outcomes

- Transfusion Adverse Events
- Iron Overload
Methods

• Retrospective analysis of data captured for clinical care of chronically transfused patients
• All nursing, physician and blood bank records for all transfusions reviewed to capture potential adverse events (AEs)
Methods

- Retrospective analysis of data captured for clinical care of chronically transfused patients
- All nursing, physician and blood bank records for all transfusions reviewed to capture potential adverse events (AEs)
- CDC Hemovigilance definitions
 - Alloimmunization
 - Febrile non-hemolytic transfusion reactions (FNHTR)
 - Delayed hemolytic transfusion reaction (DHTR)
 - Transfusion associated circulatory overload (TACO)
 - Allergic reactions
 - Transfusion related acute lung injury (TRALI)
 - Transfusion transmitted infections (TTI)
- Gastrointestinal symptoms (GI) – any abdominal pain, nausea/vomiting that required an intervention
- Citrate/hypocalcemia symptoms that required an intervention
Methods

• Iron Overload - average ferritin over 6 months > 1000ng/mL
 – Serum ferritin frequently monitored
 – Other methods to assess iron (MRI, SQUID) only performed if ferritin consistently high
Methods

• Iron Overload - average ferritin over 6 months > 1000ng/mL
 – Serum ferritin frequently monitored
 – Other methods to assess iron (MRI, SQUID) only performed if ferritin consistently high

• Statistical Analysis
 – Generalized estimating equation (GEE) models used to calculate odds ratio (OR) of outcomes with simple compared to exchange
 – GEE models relationship between repeated measures outcomes (adverse events) and predictor (transfusion method of simple or aRBX) allowing for within subject correlation
 – Analysis for transfusion adverse events → analyzed per unit (predictor = simple or aRBX unit)
 – Analysis for iron overload → transfusion time divided into 6 month blocks and each time block classified as simple or aRBX (predictor = simple or aRBX time block)
Eligibility

- SCD patients chronically transfused (at least 8 transfusions in a calendar year) at UCSF Benioff Children’s Hospital Oakland (BCHO)

- Indication for chronic transfusion therapy = stroke prevention
 - Previous stroke
 - Abnormal TCD
 - Abnormal brain MRI/A

- >75% of care at BCHO Pediatric SCD Program

- Underwent at least 1 year of chronic transfusion therapy between 1998 – 2013 (aRBX first available in 1998)
Study Population

Study Population Demographics (n=56)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>32 (57.1%) Female</td>
<td>24 (42.9%) Male</td>
</tr>
<tr>
<td>Sickle Genotype</td>
<td>55 (98.2%) SS</td>
<td>1 (1.8%) SC</td>
</tr>
<tr>
<td>Age start CTT</td>
<td>7.5 (2 – 19 years)</td>
<td></td>
</tr>
<tr>
<td>Duration of CTT</td>
<td>7.8 (1 – 23 years)</td>
<td></td>
</tr>
<tr>
<td>Total Units Transfused</td>
<td>13,700 total units</td>
<td>5,238 simple units</td>
</tr>
<tr>
<td></td>
<td>8,462 aRBX units</td>
<td></td>
</tr>
<tr>
<td>Units per Patient</td>
<td>244 (8-933 units)</td>
<td></td>
</tr>
</tbody>
</table>

* Mean, range
Study Population

- Many patients received a mixture of simple and aRBX transfused units during the time of CTT

<table>
<thead>
<tr>
<th>Percent of Total Units via Simple Transfusion</th>
<th>N Subjects</th>
<th>Mean Percent of Units via Simple</th>
<th>Minimum Percent of Units via Simple</th>
<th>Maximum Percent of Units via Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td><25% Simple</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-75% Simple</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>75% Simple</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study Population

- Many patients received a mixture of simple and aRBX transfused units during the time of CTT

<table>
<thead>
<tr>
<th>Percent of Total Units via Simple Transfusion</th>
<th>N Subjects</th>
<th>Mean Percent of Units via Simple</th>
<th>Minimum Percent of Units via Simple</th>
<th>Maximum Percent of Units via Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td><25% Simple</td>
<td>17</td>
<td>13.0%</td>
<td>3.5%</td>
<td>24.7%</td>
</tr>
<tr>
<td>25-75% Simple</td>
<td>15</td>
<td>46.5%</td>
<td>26.9%</td>
<td>74.4%</td>
</tr>
<tr>
<td>>75% Simple</td>
<td>24</td>
<td>95.5%</td>
<td>76.4%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Intravenous Access

• Types of Intravenous Access in 37 patients with any aRBX

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>% of 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral IV Only</td>
<td>25</td>
<td>67.6%</td>
</tr>
<tr>
<td>AV fistula</td>
<td>2</td>
<td>5.4%</td>
</tr>
<tr>
<td>Double Lumen Port</td>
<td>10</td>
<td>27.0%</td>
</tr>
</tbody>
</table>
Intravenous Access

- Types of Intravenous Access in 37 patients with any aRBX

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>% of 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral IV Only</td>
<td>25</td>
<td>67.6%</td>
</tr>
<tr>
<td>AV fistula</td>
<td>2</td>
<td>5.4%</td>
</tr>
<tr>
<td>Double Lumen Port</td>
<td>10</td>
<td>27.0%</td>
</tr>
</tbody>
</table>

- 82 episodes in 2070 aRBX (4.0%) transfusions → two PIVs could not be established and aRBX converted to simple
Intravenous Access

• Types of Intravenous Access in 37 patients with any aRBX

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>% of 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral IV Only</td>
<td>25</td>
<td>67.6%</td>
</tr>
<tr>
<td>AV fistula</td>
<td>2</td>
<td>5.4%</td>
</tr>
<tr>
<td>Double Lumen Port</td>
<td>10</td>
<td>27.0%</td>
</tr>
</tbody>
</table>

– 82 episodes in 2070 aRBX (4.0%) transfusions → two PIVs could not be established and aRBX converted to simple

• Complications Associated with IV Access
Intravenous Access

• Types of Intravenous Access in 37 patients with any aRBX

<table>
<thead>
<tr>
<th>Access Type</th>
<th>N</th>
<th>% of 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral IV Only</td>
<td>25</td>
<td>67.6%</td>
</tr>
<tr>
<td>AV fistula</td>
<td>2</td>
<td>5.4%</td>
</tr>
<tr>
<td>Double Lumen Port</td>
<td>10</td>
<td>27.0%</td>
</tr>
</tbody>
</table>

– 82 episodes in 2070 aRBX (4.0%) transfusions → two PIVs could not be established and aRBX converted to simple

• Complications Associated with IV Access

– Infections

– 1 AV fistula infected + bacteremia
– 0 catheter associated bacteremia with Vortex Port
Intravenous Access

- Types of Intravenous Access in 37 patients with any aRBX

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
<th>% of 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral IV Only</td>
<td>25</td>
<td>67.6%</td>
</tr>
<tr>
<td>AV fistula</td>
<td>2</td>
<td>5.4%</td>
</tr>
<tr>
<td>Double Lumen Port</td>
<td>10</td>
<td>27.0%</td>
</tr>
</tbody>
</table>

- 82 episodes in 2070 aRBX (4.0%) transfusions → two PIVs could not be established and aRBX converted to simple

- Complications Associated with IV Access
 - Infections
 - 1 AV fistula infected + bacteremia
 - 0 catheter associated bacteremia with Vortex Port
 - Thrombus
 - 1 right atrial thrombus → Port removal
Results – Iron Overload

<table>
<thead>
<tr>
<th>No / Minimal Iron Overload</th>
<th>Primary aRBX (>75% units via aRBX) N=17</th>
<th>Mixed Simple/aRBX N=15</th>
<th>Primary Simple (>75% units via Simple) N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Significant Iron Overload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developed Iron Overload on Simple → Improved/Resolved on aRBX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results – Iron Overload

<table>
<thead>
<tr>
<th>Category</th>
<th>Primary aRBX (>75% units via aRBX) N=17</th>
<th>Mixed Simple/aRBX N=15</th>
<th>Primary Simple (>75% units via Simple) N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>No / Minimal Iron Overload</td>
<td>9 (53.0%)</td>
<td></td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>Developed Significant Iron Overload</td>
<td>4 (23.5%)</td>
<td></td>
<td>20 (83.3%)</td>
</tr>
<tr>
<td>Developed Iron Overload on Simple (\rightarrow) Improved/Resolved on aRBX</td>
<td>4 (23.5%)</td>
<td></td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Results – Iron Overload

<table>
<thead>
<tr>
<th></th>
<th>Primary aRBX (>75% units via aRBX) N=17</th>
<th>Mixed Simple/aRBX N=15</th>
<th>Primary Simple (>75% units via Simple) N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>No / Minimal Iron Overload</td>
<td>9 (53.0%)</td>
<td></td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>Developed Significant Iron Overload</td>
<td>4 (23.5%)</td>
<td>20 (83.3%)</td>
<td></td>
</tr>
<tr>
<td>Developed Iron Overload on Simple → Improved/Resolved on aRBX</td>
<td>4 (23.5%)</td>
<td></td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

- Odds of developing iron overload over time with simple compared to aRBX comparing “pure” patients
 OR 5.1 [2.8-9.0] p<0.0005
Results – Iron Overload

<table>
<thead>
<tr>
<th></th>
<th>Primary aRBX (>75% units via aRBX) N=17</th>
<th>Mixed Simple/aRBX N=15</th>
<th>Primary Simple (>75% units via Simple) N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>No / Minimal Iron Overload</td>
<td>9 (53.0%)</td>
<td></td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>Developed Significant Iron Overload</td>
<td>4 (23.5%)</td>
<td></td>
<td>20 (83.3%)</td>
</tr>
<tr>
<td>Developed Iron Overload on Simple → Improved/Resolved on aRBX</td>
<td>4 (23.5%)</td>
<td></td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Results – Iron Overload

<table>
<thead>
<tr>
<th></th>
<th>Primary aRBX (>75% units via aRBX) N=17</th>
<th>Mixed Simple/aRBX N=15</th>
<th>Primary Simple (>75% units via Simple) N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>No / Minimal Iron Overload</td>
<td>9 (53.0%)</td>
<td>1 (6.7%)</td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>Developed Significant Iron Overload</td>
<td>4 (23.5%)</td>
<td>11 (73.3%)</td>
<td>20 (83.3%)</td>
</tr>
<tr>
<td>Developed Iron Overload on Simple → Improved/Resolved on aRBX</td>
<td>4 (23.5%)</td>
<td>3 (20%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Results – Iron Overload

<table>
<thead>
<tr>
<th></th>
<th>Primary aRBX (>75% units via aRBX) N=17</th>
<th>Mixed Simple/aRBX N=15</th>
<th>Primary Simple (>75% units via Simple) N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>No / Minimal Iron Overload</td>
<td>9 (53.0%)</td>
<td>1 (6.7%)</td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>Developed Significant Iron Overload</td>
<td>4 (23.5%)</td>
<td>11 (73.3%)</td>
<td>20 (83.3%)</td>
</tr>
<tr>
<td>Developed Iron Overload on Simple → Improved/Resolved on aRBX</td>
<td>4 (23.5%)</td>
<td>3 (20%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

- Odds of developing iron overload over time with simple compared to aRBX including all patients

 OR 2.7 [1.9-4.0] p<0.0005
Results - Transfusion Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Simple 5125 U</th>
<th>aRBX 8462 U</th>
<th>Odds of AE with Simple Compared to aRBX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N events</td>
<td>AE/100 U</td>
<td>N events</td>
</tr>
<tr>
<td>Allo-antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNHTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Malfunction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (SAE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any AE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any AE (citrate & malfunction excluded)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results - Transfusion Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Simple 5125 U</th>
<th>aRBX 8462 U</th>
<th>Odds of AE with Simple Compared to aRBX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N events</td>
<td>AE/100 U</td>
<td>N events</td>
</tr>
<tr>
<td>Allo-antibodies</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FNHTR</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Allergic</td>
<td>18</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>DHTR</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>GI</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td>N/A</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Machine Malfunction</td>
<td>N/A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other (SAE)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Any AE</td>
<td>40</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Any AE (citrate & malfunction excluded)</td>
<td>40</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
Results - Transfusion Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Simple 5125 U</th>
<th>aRBX 8462 U</th>
<th>Odds of AE with Simple Compared to aRBX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N events</td>
<td>AE/100 U</td>
<td>N events</td>
</tr>
<tr>
<td>Allo-antibodies</td>
<td>12</td>
<td>0.234</td>
<td>1</td>
</tr>
<tr>
<td>FNHTR</td>
<td>7</td>
<td>0.137</td>
<td>4</td>
</tr>
<tr>
<td>Allergic</td>
<td>18</td>
<td>0.351</td>
<td>22</td>
</tr>
<tr>
<td>DHTR</td>
<td>1</td>
<td>0.019</td>
<td>0</td>
</tr>
<tr>
<td>GI</td>
<td>2</td>
<td>0.039</td>
<td>4</td>
</tr>
<tr>
<td>Citrate</td>
<td>N/A</td>
<td>N/A</td>
<td>17</td>
</tr>
<tr>
<td>Machine Malfunction</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Other (SAE)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Any AE</td>
<td>40</td>
<td>0.780</td>
<td>51</td>
</tr>
<tr>
<td>Any AE (citrate & malfunction excluded)</td>
<td>40</td>
<td>0.780</td>
<td>32</td>
</tr>
</tbody>
</table>
Results - Transfusion Adverse Events

<table>
<thead>
<tr>
<th>Simple 5125 U</th>
<th>aRBX 8462 U</th>
<th>Odds of AE with Simple Compared to aRBX</th>
</tr>
</thead>
<tbody>
<tr>
<td>N events</td>
<td>AE/100 U</td>
<td>N events</td>
</tr>
<tr>
<td>Allo-antibodies</td>
<td>12</td>
<td>0.234</td>
</tr>
<tr>
<td>FNHTR</td>
<td>7</td>
<td>0.137</td>
</tr>
<tr>
<td>Allergic</td>
<td>18</td>
<td>0.351</td>
</tr>
<tr>
<td>DHTR</td>
<td>1</td>
<td>0.019</td>
</tr>
<tr>
<td>GI</td>
<td>2</td>
<td>0.039</td>
</tr>
<tr>
<td>Citrate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Machine Malfunction</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Other (SAE)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Any AE</td>
<td>40</td>
<td>0.780</td>
</tr>
<tr>
<td>Any AE (citrate & malfunction excluded)</td>
<td>40</td>
<td>0.780</td>
</tr>
</tbody>
</table>
Results - Transfusion Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Simple 5125 U</th>
<th>aRBX 8462 U</th>
<th>Odds of AE with Simple Compared to aRBX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N events</td>
<td>AE/100 U</td>
<td>N events</td>
</tr>
<tr>
<td>Allo-antibodies</td>
<td>12</td>
<td>0.234</td>
<td>1</td>
</tr>
<tr>
<td>FNHTR</td>
<td>7</td>
<td>0.137</td>
<td>4</td>
</tr>
<tr>
<td>Allergic</td>
<td>18</td>
<td>0.351</td>
<td>22</td>
</tr>
<tr>
<td>DHTR</td>
<td>1</td>
<td>0.019</td>
<td>0</td>
</tr>
<tr>
<td>GI</td>
<td>2</td>
<td>0.039</td>
<td>4</td>
</tr>
<tr>
<td>Citrate</td>
<td>N/A</td>
<td>N/A</td>
<td>17</td>
</tr>
<tr>
<td>Machine Malfunction</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Other (SAE)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Any AE</td>
<td>40</td>
<td>0.780</td>
<td>51</td>
</tr>
<tr>
<td>Any AE (citrate & malfunction excluded)</td>
<td>40</td>
<td>0.780</td>
<td>32</td>
</tr>
</tbody>
</table>
Summary

• Despite an increase in unit exposure with aRBX, there was no significant difference in transfusion adverse events with the exception of lower alloimmunization with aRBX
Summary

• Despite an increase in unit exposure with aRBX, there was no significant difference in transfusion adverse events with the exception of lower alloimmunization with aRBX

• There were significantly increased odds of iron overload with simple compared to aRBX
Summary

• Despite an increase in unit exposure with aRBX, there was no significant difference in transfusion adverse events with the exception of lower alloimmunization with aRBX

• There were significantly increased odds of iron overload with simple compared to aRBX

• Future Directions: compare clinical outcomes between simple and aRBX
 – New/progression cerebral infarcts or cerebral vascular disease
 – Transcranial doppler
 – Normalization or development of abnormal TCD
 – Pre-transfusion HbS, reticulocyte count
 – Hospitalizations (any, vaso-occclusive pain episode, acute chest syndrome)
Acknowledgements

• Apheresis team at UCSF Benioff Children’s Hospital Oakland
 – Keith Quirolo, MD
 – Alicia Garcia, RN, HP (ASCP)
 – Lynne Neumayr, MD
 – Anne Marsh, MD

• Research staff at UCSF Benioff Children’s Hospital Oakland
 – Shanda Robertson
 – Deanna Fink