Heart to Heart: Diabetes Medications and Cardiovascular Outcomes

ASHLYN SMITH, MMS PA-C
SCOTTSDALE, AZ
SECRETARY, AMERICAN SOCIETY OF ENDOCRINE PHYSICIAN ASSISTANTS
ASHLYNS9@ENDOASSOCAZ.NET

Objectives

Review the available medication options used to treat Type 2 Diabetes
Examine the cardiovascular outcomes trial data for the above medications
Discuss considerations for appropriate Type 2 Diabetes medication selection given cardiovascular safety information

The Lingo
The Lingo

Primary outcome
- Specific key measurement of the effect of a variable

Secondary outcome
- Information on events of secondary importance
 - E.g. side effects, tolerability, or therapeutic effects

Major Adverse Cardiovascular Event (MACE)
- 3-Point MACE: Cardiovascular (CV) death, non-fatal myocardial infarction (MI), or non-fatal stroke (CVA)
- 4-Point MACE: 3-P MACE + first occurrence of hospitalization for unstable angina

Superiority vs. Non-inferiority

The Risk

ACCORD

BACKGROUND
Patients with established cardiovascular disease (CVD) or high risk for CVD
Primary outcome: 3P MACE
Compared treatment targets of standard of care vs intensive therapy

RESULTS
Intensive therapy arms
- Systolic blood pressure <120mmHg
- No change in outcome
- Adding fibrate to statin therapy
- No change in outcome
- Normoglycemia
- Increased risk of CV death and all-cause mortality in intensive treatment arm
 - This portion of the trial was stopped 18 months early due to the increased rate of death
ADVANCE

BACKGROUND
Patients with a history of a microvascular/macrovascular complication or a risk factor of vascular disease. Compared standard of care to intensive glucose and blood pressure control in the reduction of micro- and macrovascular disease (3P MACE).

RESULTS
- Glucose arm: Reduction in primary outcome driven primarily by reduction in nephropathy, increase in severe hypoglycemia and hospitalizations, no difference in death.
- Blood pressure arm: Reduction in primary outcome.

HEART2D

BACKGROUND
Patients with history of MI. Comparing fasting vs postprandial blood glucose control on rates of 3P MACE, coronary revascularization, or hospitalization for acute coronary syndrome (ACS).

RESULT
No difference in outcome between the arms for the primary outcome.

The Precedence
The Precedence

2007: FDA concludes that rosiglitazone increases the risk of myocardial ischemia (meta-analyses)
2008: FDA issues a guidance for new antidiabetic agents to demonstrate that there is not an unacceptable increase in the CV risk
 • HbA1c as primary endpoint is not sufficient
2010: FDA significantly restricts rosiglitazone use to patients who are unable to control blood glucose by any other means
2013: After reanalysis of the data including the RECORD trial, FDA votes to remove restrictions on rosiglitazone

Case #1: Irma

56 year old Hispanic female presents to endocrine clinic for Type 2 DM follow-up
Past medical history:
 • Type 2 DM
 • Hypertension
 • Systemic Lupus Erythematous
 • Congestive Heart Failure Class II
 • Osteoporosis
Current medications:
 • Glimepiride 1mg QD
 • Rosuvastatin 10mg OHS
 • Lisinopril 40mg QD
 • Lasix 20mg QD
 • KCl 10mEq QD

Vital signs:
 • BP 130/78
 • Pulse 76
 • Height: 70”, weight 230 pounds, BMI 33 kg/m²
Lab evaluation:
 • HbA1c 7.6%
 • Total cholesterol 196mg/dL, Triglycerides 179mg/dL, HDL 32mg/dL, LDL 76mg/dL
 • Microalbumin <30mcg/mg creatinine
 • CMP normal
Patient concerns: Does not want to gain weight
Case #2: Harvey

45 year old Caucasian male presents to the endocrine clinic for Type 2 DM follow up

Past medical history:
- Type 2 Diabetes
- Hypertension
- Hyperlipidemia
- 3 vessel CABG age 43

Current medications:
- Metformin 1,000mg BID
- Atorvastatin 20mg QHS
- Lisinopril 20mg QD
- Metoprolol 100mg QD
- ASA 81mg QD

Case #2: Harvey

Vital signs:
- BP 138/86
- Pulse 82
- Height: 74”, weight 350 pounds, BMI 44 kg/m²

Lab evaluation:
- HbA1c 7.9%
- Total cholesterol 204mg/dL, Triglycerides 135mg/dL, HDL 43mg/dL, LDL 66mg/dL
- Microalbumin <30mcg/mg creatinine
- CMP normal

Patient concerns: Does not want to add more pills

The Agents
Thiazolidinediones

Generic
Mechanism of action:
- Insulin sensitizer in peripheral tissue
Considerations
- Early DM and high insulin resistance
- Concomitant non-alcoholic fatty liver disease
- Loss of bone mineral density

Cautions
- Risk of heart failure (HF)
- Hepatic impairment
- Rosiglitazone

Contraindications
- NYHA Class III or IV HF
- Active bladder cancer (CA)
- Pioglitazone

Rosiglitazone: RECORD

PRO
- Included both normal and high risk CV patients
- Non-inferiority for 3P MACE
 - Cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke

CON
- Increased
 - HF hospital admission or death
 - Upper and distal lower limb fracture, mainly in women

Pioglitazone: PROACTIVE

PRO
- Pts with history of CVD
- Non-significant reduction in primary outcome:
 - All-cause mortality
 - Non-fatal MI and stroke
 - ACS
 - Endovascular or surgical intervention in the coronary or leg arteries
 - Amputation above the ankle
- Reduction in secondary outcome:
 - Composite of all-cause mortality, non-fatal myocardial infarction, and stroke

CON
- Increased hospitalizations for HF
- HF mortality rates did not differ
Pioglitazone: TOSCA IT

PRO
- Pts with low risk of CVD
- Comparing pioglitazone vs sulfonylurea (glibenclamide, glimepiride, gliclazide) as add on to metformin
- Non-inferiority for primary outcome:
 - All-cause mortality
 - Non-fatal MI and stroke
 - Coronary revascularization
- No difference in heart failure, bladder cancer, and fractures
- Significantly lower rates of hypoglycemia

CON
- Average of 2kg weight gain in both groups

Metformin (Biguanide)

Generic
- Mechanism of action:
 - Increase hepatic insulin sensitivity
 - Decrease gluconeogenesis
 - Decrease glucagon secretion

Considerations
- First line
- Vitamin B12
- Slow titration

Contraindications
- Acute or unstable HF
- Severe CKD (eGFR <30mL/minute per 1.73 m²)

Caution
- Hepatic impairment

Metformin: SPREAD-DIMCAD

PRO
- Patients with coronary artery disease (CAD)
- **Significantly reduced** primary outcome vs glipizide: composite of 3P MACE, death from any cause, or arterial revascularization
- No significant difference in adverse events

CON
- None
Sulfonylureas (SU)

Generic
- **Mechanism of action**
 - Stimulates beta cell insulin release

Cautions
- Hypoglycemia
- Full risk/bone density
- Hypoglycemic unawareness
- CAD/Arythmia
- Seizure disorder
- Sulfur allergy
- Hepatic and renal impairment

Considerations
- Potential for slight weight gain (2kg)
- Cost

Glimepiride

2001: prior to CVOT guidance

Glimepiride compared to glibenclamide

Effect of ischemic preconditioning (IP) in rat hearts

Results:
- Glibenclamide removes the protective effects of IP
- Glimepiride does not interfere with IP

Agent Primary Outcome Considerations

<table>
<thead>
<tr>
<th>Agent</th>
<th>Primary Outcome</th>
<th>Result</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosiglitazone</td>
<td>CV death, non-fatal MI, or non-fatal stroke</td>
<td>Non-inferiority</td>
<td>HF hospital admission/death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper/distal lower limb fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Women</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>Non-fatal MI and stroke</td>
<td>Non-inferiority</td>
<td>HF hospital admission</td>
</tr>
<tr>
<td></td>
<td>All-cause mortality, ACS, endovascular/surgical intervention in coronary/leg arteries, amputation</td>
<td></td>
<td>No change in mortality</td>
</tr>
<tr>
<td>Metformin</td>
<td>CV death, non-fatal MI, or non-fatal stroke</td>
<td>Superiority</td>
<td></td>
</tr>
</tbody>
</table>
Dipeptidyl Peptidase 4 Inhibitors

Brand-only
- Exception: alogliptin

Mechanism of action
- Slows GLP-1 metabolism, restoring insulin and glucagon to physiologic levels
- Increases insulin synthesis/release
- Decreases glucagon levels

Consideration
- Modest decrease in HbA1c
- Postprandial hyperglycemia

Excretion
- Renal: sitagliptin, saxagliptin, alogliptin
- Feces: linagliptin

Contraindications
- Dose adjustment in renal impairment (not linagliptin)
- History of pancreatitis

Sitagliptin: TECOS

<table>
<thead>
<tr>
<th>PRO</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established CVD</td>
<td>Non-significant increase in acute pancreatitis</td>
</tr>
<tr>
<td>Non-inferiority for 4P MACE</td>
<td>No increased hospitalization for HF</td>
</tr>
</tbody>
</table>

Alogliptin: EXAMINE

<table>
<thead>
<tr>
<th>PRO</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ACS 15-90 days prior to randomization</td>
<td>None</td>
</tr>
<tr>
<td>Non-inferiority primary outcome: 3P MACE</td>
<td>FDA warning issued for increase in HF hospitalizations with alogliptin and saxagliptin</td>
</tr>
<tr>
<td>No statistical difference in HF hospitalizations</td>
<td>Non-significant decrease in HF deaths in alogliptin arm</td>
</tr>
</tbody>
</table>

Saxagliptin: SAVOR-TIMI 53

<table>
<thead>
<tr>
<th>PRO</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of established CVD or multiple risk factors for vascular disease</td>
<td>Non-significant increase in hospitalization for HF</td>
</tr>
<tr>
<td>Non-inferiority: 3P MACE</td>
<td>Significant increase in hypoglycemia in patients on SU and with HbA1c <7%</td>
</tr>
</tbody>
</table>

Linagliptin: CAROLINA

<table>
<thead>
<tr>
<th>PRO</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with established CVD</td>
<td>Non-significant increase in HF</td>
</tr>
<tr>
<td>Non-inferiority vs glimepiride and voglibose for composite of 4P-MACE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary Outcome</th>
<th>Result</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitagliptin</td>
<td>CV death, non-fatal MI, nonfatal stroke, or hospitalization for unstable angina</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Alogliptin</td>
<td>CV death, non-fatal MI, or non-fatal stroke</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Saxagliptin</td>
<td>CV death, non-fatal MI, or non-fatal stroke</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Linagliptin</td>
<td>CV death, non-fatal MI infarction, non-fatal stroke, and hospitalization for unstable angina</td>
<td>Non-inferiority</td>
</tr>
</tbody>
</table>
Glucagon-like Peptide-1 Receptor Agonists

- **Brand-only**
- **Mechanism of action**
 - Augment glucose-dependent insulin secretion and decreases glucagon levels
 - Slow gastric emptying and increase satiety which may promote weight loss
 - May increase beta cell mass and function
- **Contraindications**
 - Gastroparesis
 - History of pancreatitis
 - Fam Hx or PMH medullary thyroid CA or MEN 2
- **Considerations**
 - Weight loss/Appetite control
 - Poor medication adherence (weekly preparations)
 - Titrination (except exenatide weekly)
 - Caution in renal impairment (exenatide)

*Multiple endocrine neoplasia type 2

Liraglutide: LEADER

PRO
- Patients at high risk of or established CVD
- Primary outcome: superiority
- Composite of 3P MACE
- Decrease in all cause mortality
- Nonsignificant decrease in HF hospitalizations and acute pancreatitis
- No difference in medullary thyroid cancer

CON
- Decrease in non-fatal MI and stroke were not significant
- Increase in cholelithiasis
- Non-significant increase in pancreatic CA

FDA indication 8/25/17: Reduce the risk of MACE, MI, CVA, or CV death in DM2 and established CVD

Exenatide Weekly: EXSCEL

PRO
- Wide range of risk for CVD
- Non-inferiority: 3P MACE
- Non-significant reduction in CV events
- No difference in acute pancreatitis, pancreatic CA, or medullary thyroid CA

CON
- Non-significant increased rate of papillary thyroid CA

Lixisenatide: ELIXA

PRO
- Patients with recent ACS
- Non-inferiority for 4P MACE

CON
- None

Other Glucagon-like Peptide-1 Receptor Agonists

Dulaglutide: REWIND
- Ongoing
- Evaluating reduction in 3P MACE

Semaglutide: SUSTAIN-6
- Significant reduction in composite of 3P MACE
 - Driven by non-fatal MI/stroke
 - No difference in CV death

<table>
<thead>
<tr>
<th>Agent</th>
<th>Primary Outcome</th>
<th>Result</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide</td>
<td>Composite of CV death, non-fatal MI, or non-fatal stroke</td>
<td>Superiority</td>
<td>- Non-significant decrease in non-fatal MI and stroke</td>
</tr>
<tr>
<td></td>
<td>CV death, non-fatal MI, or non-fatal stroke</td>
<td>Non-inferiority</td>
<td>- Non-significant decrease in HF hospitalizations</td>
</tr>
<tr>
<td>Exenatide Weekly</td>
<td>CV death, non-fatal MI, non-fatal stroke, hospitalization for unstable angina</td>
<td>Non-inferiority</td>
<td>- No difference in acute pancreatitis, pancreatic CA, or medullary thyroid CA</td>
</tr>
<tr>
<td>Semaglutide</td>
<td>Composite of CV death, non-fatal MI, or non-fatal stroke</td>
<td>Non-inferiority</td>
<td>- Non-significant increased rate of papillary thyroid CA</td>
</tr>
</tbody>
</table>

Eli Lilly and Company

Marso, Steven P, MD, et al
Sodium-glucose Co-transporter-2 Inhibitors

Brand-only

- **Mechanism of action**
 - Reduce renal glucose reabsorption and increase urinary glucose excretion

- **Contraindications**
 - GFR <30 mL/min/1.73 m²

- **Warnings**
 - GFR <45 mL/min/1.73 m²
 - canagliflozin: dose adjustment
 - empagliflozin
 - GFR <60 mL/min/1.73 m²

Considerations

- Monitor hydration
- Monitor for hyperkalemia (canagliflozin)
- Caution for genitourinary/mycotic infections
- Weight loss
- Moderate HbA1c reduction

Empagliflozin: EMPA-REG

12/2/2016 Label update: reduction in CV death in pts with DM2 and CVD

<table>
<thead>
<tr>
<th>PRO</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pts with established CVD</td>
<td>No difference in reduction of MI or stroke</td>
</tr>
<tr>
<td>Superiority for composite primary outcome of 3P MACE</td>
<td></td>
</tr>
</tbody>
</table>
 - Primarily due to reduction in CV death |
| Significantly lower risk of: | |
 - Death from cardiovascular causes |
 - Death from any cause |
 - Hospitalization for heart failure |
| Lower rate of acute renal failure | |

CON
Non-significant increase in fractures (falls)

Label update September 2015

- FDA safety alert May 16, 2017

Canagliflozin: CANVAS

PRO

- Included patients with both high risk for CVD and with a history of CVD

- **Superiority in composite of primary outcome: 3P MACE**

- Significant reduction in HF hospitalization

CON

- Twice the risk of amputation
 - Particularly at the toe or metatarsal

- FDA safety alert May 16, 2017

- Non-significant increase in fractures (falls)

- **Label update September 2015**

Canagliflozin: CANVAS-R

<table>
<thead>
<tr>
<th>PRO</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-significant</td>
<td>Exploratory analysis</td>
</tr>
<tr>
<td>• Reduction in progression of albuminuria</td>
<td></td>
</tr>
<tr>
<td>• Increased regression of albuminuria</td>
<td></td>
</tr>
<tr>
<td>• Helps maintain eGFR</td>
<td></td>
</tr>
<tr>
<td>• Reduced progression of end stage kidney disease, and renal death</td>
<td></td>
</tr>
<tr>
<td>• No increased risk of fractures</td>
<td></td>
</tr>
</tbody>
</table>

Dapagliflozin, Canagliflozin, Empagliflozin: CVD-REAL

Spurred by EMPA-REG

Observational study of patients with and without CVD

Compared hospitalization for HF with the SGLT2 inhibitors vs standard of care with other glucose lowering drugs (oGLD)

- Lower risk of hospitalization for HF and all-cause mortality
- Suggests class effect

<table>
<thead>
<tr>
<th>Agent</th>
<th>Primary Outcome</th>
<th>Result</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empagliflozin</td>
<td>Composite of CV death, non-fatal MI, or non-fatal stroke</td>
<td>Superiority</td>
<td>Patients with established CVD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No difference in reduction of MI or stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower risk of HF hospitalization</td>
</tr>
<tr>
<td>Canagliflozin</td>
<td>Composite of CV death, non-fatal MI, or non-fatal stroke</td>
<td>Superiority</td>
<td>Amputation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Particularly toe or metatarsal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fewer HF hospitalizations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Renal benefits</td>
</tr>
<tr>
<td>Dapagliflozin, Canagliflozin, and Empagliflozin</td>
<td>Hospitalization for HF and all-cause mortality</td>
<td>Superiority</td>
<td>Observational study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consider class effect</td>
</tr>
</tbody>
</table>
The New Paradigm?

Irma: Clinical application

56 year old Hispanic female

Past medical history:
- Type 2 Diabetes
- Hypertension
- Systemic Lupus Erythematosus
- Congestive Heart Failure Class II
- Osteoporosis

Current medications:
- Glimepiride 1mg QD
- Rosuvastatin 10mg QHS
- Lisinopril 40mg QD
- Lasix 20mg QD
- KCl 10mEq QD

Vital signs:
- BP 130/78
- Pulse 76
- Height: 70", weight 230 pounds, BMI 33 kg/m²

Lab evaluation:
- HbA1c 7.6%
- Total cholesterol 196mg/dL, Triglycerides 179mg/dL, HDL 32mg/dL, LDL 76mg/dL
- Microalbumin <30mcg/mg creatinine
- CMP normal

Patient concerns: Does not want to gain weight

Clinician concerns?
Irma: Minimizing Risk

HF class—which medications should be avoided?
- Rosiglitazone, pioglitazone, saxagliptin, alogliptin
- Metformin ok (unstable)

Patient has osteoporosis
- Hypoglycemia/fall risk/bone risk:
 - Consider discontinuing glimepiride
 - Avoid canagliflozin, pioglitazone, rosiglitazone

HbA1c reduction—What is Irma’s goal?

Weight concerns
- Weight neutral: select DPP4i
- Possible weight loss: GLP-1 agonist or select SGLT2i

Irma: Improving Clinical Outcome

<table>
<thead>
<tr>
<th>Agent</th>
<th>HF risk reduction</th>
<th>Cardiovascular protection/prevention</th>
<th>HbA1c reduction</th>
<th>Weight loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Empagliflozin</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Canagliflozin</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dapagliflozin</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Increased Awareness of the Impact on HF

<table>
<thead>
<tr>
<th>Heart Failure</th>
<th>Agent</th>
<th>Rosiglitazone</th>
<th>Pioglitazone</th>
<th>Saxagliptin</th>
<th>Alogliptin</th>
<th>Metformin</th>
<th>Sitagliptin</th>
<th>Linagliptin</th>
<th>Exenatide</th>
<th>Liisenatide</th>
<th>Piiraglutide</th>
<th>Empagliflozin</th>
<th>Canagliflozin</th>
<th>Dapagliflozin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td></td>
<td>Rosiglitazone</td>
<td>Pioglitazone</td>
<td>Saxagliptin</td>
<td>Alogliptin</td>
<td>Metformin</td>
<td>Sitagliptin</td>
<td>Linagliptin</td>
<td>Exenatide</td>
<td>Liisenatide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased</td>
<td></td>
</tr>
</tbody>
</table>
Case #2: Harvey

45 year old Caucasian male presents to the endocrine clinic for Type 2 DM follow up

Past medical history:
- Type 2 Diabetes
- Hypertension
- Hyperlipidemia
- 3 vessel CABG age 43

Current medications:
- Metformin 1,000mg BID
- Atorvastatin 20mg QHS
- Lisinopril 20mg QD
- Metoprolol 100mg QD
- ASA 81mg QD

Harvey: Clinical Application

Vital signs:
- BP 138/86
- Pulse 82
- Height: 74", weight 350 pounds, BMI 44 kg/m²

Lab evaluation:
- HbA1c 7.9%
- Total cholesterol 204mg/dL
- Triglycerides 135mg/dL
- HDL 43mg/dL
- LDL 66mg/dL
- Microalbumin <30mcg/mg creatinine
- CMP normal

Patient concerns: Does not want to add more pills

Clinician concerns?

Harvey: Minimizing Risk

Minimizing risk
- HbA1c reduction—what is Harvey's goal?
- Which medications should be avoided?
 - Rosiglitazone, pioglitazone
Agent HF risk reduction Cardiovascular protection and prevention INR reduction Weight loss

<table>
<thead>
<tr>
<th>Agent</th>
<th>HF risk reduction</th>
<th>Cardiovascular protection and prevention</th>
<th>INR reduction</th>
<th>Weight loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>Neutral</td>
<td>Non-inferiority</td>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td>Empagliflozin</td>
<td>✔</td>
<td>✔ Superiority</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Canagliflozin</td>
<td>✔</td>
<td>✔ Superiority</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dapagliflozin</td>
<td>✔</td>
<td>Unknown</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Liraglutide</td>
<td>Neutral</td>
<td>Non-inferiority</td>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td>Sitagliptin</td>
<td>✔</td>
<td>Non-inferiority</td>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td>Alogliptin</td>
<td>X</td>
<td>Non-inferiority</td>
<td></td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Saxagliptin</td>
<td>X</td>
<td>Non-inferiority</td>
<td></td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Saxagliptin</td>
<td>X</td>
<td>Non-inferiority</td>
<td></td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Sitagliptin</td>
<td>Neutral</td>
<td>Non-inferiority</td>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td>Linagliptin</td>
<td>Neutral</td>
<td>Non-inferiority</td>
<td></td>
<td>Non-inferiority</td>
</tr>
</tbody>
</table>

Summary of Cardiovascular Protection/Prevention

<table>
<thead>
<tr>
<th>Agent</th>
<th>HF risk reduction</th>
<th>Cardiovascular protection and prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide</td>
<td>Neutral</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Empagliflozin</td>
<td>✔</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Canagliflozin</td>
<td>✔</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Dapagliflozin</td>
<td>✔</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Thank You!
Primary vs Secondary Prevention

<table>
<thead>
<tr>
<th>History of CVD/CAD</th>
<th>Prevention Agent</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pioglitazone</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td></td>
<td>Lisinopril</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saxagliptin</td>
<td>Superiority</td>
</tr>
<tr>
<td></td>
<td>Sitagliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liraglutide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lixisenatide</td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exenatide</td>
<td></td>
</tr>
<tr>
<td>Non‐inferiority</td>
<td>Saxagliptin</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td></td>
<td>Sitagliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linagliptin</td>
<td>Superiority</td>
</tr>
<tr>
<td></td>
<td>Alogliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empagliflozin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapagliflozin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History of high risk for CVD</th>
<th>Prevention Agent</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saxagliptin</td>
<td>Non‐inferiority</td>
<td></td>
</tr>
<tr>
<td>Non‐inferiority</td>
<td>Saxagliptin</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td></td>
<td>Sitagliptin</td>
<td></td>
</tr>
<tr>
<td>Superiority</td>
<td>Liraglutide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lixisenatide</td>
<td></td>
</tr>
<tr>
<td>Superiority</td>
<td>Linagliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alogliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metformin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal and high risk for CVD</th>
<th>Prevention Agent</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exenatide</td>
<td>Non‐inferiority</td>
<td></td>
</tr>
<tr>
<td>Superiority</td>
<td>Saxagliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sitagliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linagliptin</td>
<td></td>
</tr>
<tr>
<td>Superiority</td>
<td>Alogliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empagliflozin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapagliflozin</td>
<td></td>
</tr>
</tbody>
</table>

References

References

References

References

References