Parkinson’s Disease: the ABC’s of PD Drug Therapy

Kimberly Mulcahy, PharmD, BCPS
Clinical Pharmacist Buffalo Psychiatric Center NYSOMH
Adjunct Faculty University at Buffalo SoPPS
Disclosure

• No financial interests or relationships to disclose
Objectives

• Design a patient specific drug regimen for a patient diagnosed with Parkinson’s Disease (PD)

• Identify medications that can cause drug-induced Parkinsonism and medications that can exacerbate PD

• Evaluate signs/symptoms of PD psychosis and recommend therapy modification, including antipsychotic treatment, to increase patient quality of life
Epidemiology

• Approx. 1% population >60 years old
 • 3.5% 85-89 years

• 60,000 new cases per year

• Estimates 1 million in United States / 5 million worldwide

• Prognosis:
 • Decreased life expectancy
 • Current medical treatments do not alter mortality
Cause

• Genetic factors (10% of cases)
 • LRRK2 mutation
 • Glucocerebrosidase gene mutation
 • Parkin mutation

• Environmental factors
 • Industrial exposure
 • Heavy metals (manganese, lead, copper)
 • Pesticides
Pathophysiology

Chronic, progressive, neurodegenerative disorder

- Progressive premature death of dopaminergic neurons
 - Motor symptoms: 30-70% neuron loss in substantia nigra
 - Cognitive dysfunction/mood disorders/impuls control: outside of the basal ganglia or in serotonergic and noradrenergic systems
 - Autonomic syndromes: outside of brain – spinal cord, peripheral autonomic nervous system
Pathophysiology

Neurodegenerative disease:
- Abnormal protein aggregates in midbrain, brain stem, and olfactory bulb
 - Lewy Bodies
 - α-synuclein
Pathophysiology

- Braak staging of Lewy Body deposition:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sites Affected</th>
<th>Major Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Dorsal motor nucleus of vagus nerve and olfactory tract</td>
<td>Constipation, Loss of smell</td>
</tr>
<tr>
<td>II</td>
<td>Locus coeruleus & subcoeruleus complex</td>
<td>Sleep disorder, Mood dysfunction</td>
</tr>
<tr>
<td>III</td>
<td>Substantia nigra</td>
<td>Motor symptoms</td>
</tr>
<tr>
<td>IV-VI</td>
<td>Cortical involvement</td>
<td>Dementia, Psychosis</td>
</tr>
</tbody>
</table>

Diagnosis

- Neuroimaging:
 - DaTscan
 - MRI
 - Transcranial Doppler ultrasonography
 - PET
 - SPECT

- Biomarkers
 - α-synuclein in CSF

Diagnosis

• Clinical features and history of symptoms:
 • Asymmetric motor manifestations
 • Resting tremor
 • Hypophonia
 • Masked facial expression
 • Micrographia
 • Stiffness/rigidity
 • Bradykinesia
 • Shuffling gait
 • Poor balance

Diagnosis

• Neurologic exam:
 • Limb stiffness?
 • Animated expression?
 • Tremor?
 • Normal gait? Arm swing present?
 • Balance?
 • Ease of rising from sitting?
<table>
<thead>
<tr>
<th></th>
<th>Depression / anxiety</th>
<th>Hallucinations, psychosis, delusions</th>
<th>Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cognitive impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsions/impulsivity</td>
</tr>
<tr>
<td>Psychiatric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomic</td>
<td>Constipation</td>
<td>Urinary urgency/incontinence</td>
<td>Orthostasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sexual dysfunction</td>
</tr>
<tr>
<td>Sleep</td>
<td>Restless leg syndrome (RLS)</td>
<td>Insomnia</td>
<td>Daytime somnolence</td>
</tr>
<tr>
<td>Sensory</td>
<td>Pain</td>
<td>Numbness</td>
<td>Parathesias</td>
</tr>
<tr>
<td>Other</td>
<td>Olfactory impairment / odor identification deficit</td>
<td>Dysarthria</td>
<td>Hypophonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diplopia</td>
</tr>
</tbody>
</table>

Early v. Late Symptoms

<table>
<thead>
<tr>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Motor fluctuations
Choreiform dyskinesias
Gait freezing
Falls</td>
</tr>
<tr>
<td>Tremor of hand, jaw, or foot
Bradykinesia
Decreased facial expression
Decreased arm swing or leg dragging
Frozen shoulder
Stiffness/numbness/pain in limb
Difficulty turning in bed
Micrographia
Soft Voice</td>
<td></td>
</tr>
<tr>
<td>Non-Motor</td>
<td>Dysphagia
Neuropsychiatric symptoms
Dementia
Autonomic disturbances
Seborrheic dermatitis</td>
</tr>
<tr>
<td>Constipation (approx. 30%)
REM sleep behavior disorder
Depression
Olfactory impairment (up to 97%)</td>
<td></td>
</tr>
</tbody>
</table>

Treatment

• Goals:
 • Increase dopamine (DA) in the striatum

• Challenges:
 • Slow progression (targeting in clinical trials)
 • Symptom relief v. modifying disease progression
 • Multiple medication adjustments and adjunctive treatments required
Available Treatment Options

<table>
<thead>
<tr>
<th>DA precursors</th>
<th>Levodopa (L-dopa)</th>
<th>Immediate precursor of DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA agonists</td>
<td>Apomorphine</td>
<td>Stimulate DA receptors in the brain</td>
</tr>
<tr>
<td></td>
<td>Bromocriptine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ropinirole</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pramipexole</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotigotine</td>
<td></td>
</tr>
<tr>
<td>MAO-B inhibitors</td>
<td>Selegiline</td>
<td>Inhibits MAO-B which degrades DA</td>
</tr>
<tr>
<td></td>
<td>Rasagiline</td>
<td></td>
</tr>
<tr>
<td>COMT inhibitors</td>
<td>Entacapone</td>
<td>Reduces peripheral conversion of L-dopa</td>
</tr>
<tr>
<td></td>
<td>Tolcapone</td>
<td></td>
</tr>
<tr>
<td>Anticholinergics</td>
<td>Benztropine</td>
<td>Reduces cholinergic activity (caused by loss of DA) and reduces tremor</td>
</tr>
<tr>
<td></td>
<td>Trihexyphenidyl</td>
<td></td>
</tr>
</tbody>
</table>
Treatment Algorithm

- Levodopa monotherapy
- MAO-B Inhibitors
- Dopamine Agonists
Adjunctive Treatment

- **MAO-B Inhibitors**
 - +/- benefit in “off” time
 - More effective in earlier “wearing off” v. later “on and off”

- **Dopamine Agonists**
 - More off time reduction
 - Non-ergot derived*

- **COMT inhibitors**
 - Lower risk hallucinations
 - Fewer ADE

- **Anticholinergics** → increased risk cognitive impairment, hallucinations, falls, urinary retention

- **Apomorphine** +/- efficacy, not first line in adjunct

- **Amantadine** → effective for L-dopa dyskinesias

Early Onset PD

• Early onset (Young-Onset PD):
 • <50 years old
 • Slower disease progression
 • More likely to have levodopa induced dyskinesias
 • DA agonist, MOA-B inhibitors, anticholinergics first line treatment
Levodopa

- Precursor to dopamine
- Combination products:
 - Carbidopa/Levodopa (also available: ODT, controlled release, extended release, enteral suspension)
 - Carbidopa/Levodopa/Entacapone
- Maintenance dose:
 - 300-1600 mg/day (L-dopa)
Levodopa

• “Off” and “On” phenomena
 • Short $t_{1/2}$
 • Loss of neuronal storage capability
• “On”/Peak-dose dyskinesias
 • Choreiform movements
 • Peak striatal dopamine levels
 • Elevated glutamate levels
• “Wearing off”
 • As PD progresses, duration of action significantly decreases
<table>
<thead>
<tr>
<th>Effect</th>
<th>Treatment</th>
</tr>
</thead>
</table>
| End of dose “wearing off” | Increase frequency of L-dopa
Add either:
COMT inhibitor
MAO-B inhibitor
DA agonist |
| Delayed “on” (or no on response) | L-dopa on empty stomach
L-dopa ODT
Switch to IR L-dopa (if taking CR)
Apomorphine SQ |
| Freezing/start hesitation | Increase L-dopa
Add either:
MAO-B inhibitor
DA agonist
Physical therapy |
| Peak dose dyskinesia | Decrease L-dopa doses
Add amantadine |
Dopamine Agonists

• Stimulate DA receptors in the brain
• Not as potent as carbidopa/levodopa
 • Less likely to cause dyskinesias
• Monotherapy or combination therapy
 • Apomorphine 3-12 mg/day (injection)
 • Bromocriptine 15-40 mg/day
 • Pramipexole (ER) 1.5-4.5 mg/day
 • Ropinirole (XL) 8-24 mg/day
 • Rotigotine 2-8 mg/day
MAO-B Inhibitors

• Block MAO-B enzyme that breaks down levodopa
• Delay need for carbidopa/levodopa if prescribed in early PD
• Maintenance doses:
 • Rasagiline 0.5-1 mg/day
 • Selegiline 5-10 mg/day
 • Selegiline ODT 1.25-2.5 mg/day
COMT Inhibitors

- No effects on PD if used as monotherapy
- Prolongs effect of levodopa
- Maintenance doses:
 - Entacapone 200-1600 mg/day
 - Tolcapone 300-600 mg/day
Other Medications

• Anticholinergics
 • Benztropine 1-6 mg/day
 • Trihexyphenidyl 6015 mg/day

• Amantadine
 • Tremor in early PD
 • Reduce dyskinesias in DA medication
 • 200-300 mg/day
Non-motor Symptoms

• Concomitant emotional, cognitive, and behavioral features cause significant disability

• Research shifting towards non-motor symptoms of PD:
 • Depression
 • Anxiety
 • Apathy
 • Dementia
 • Psychosis
Psychosis

• 20-40% of PD patients
• Hallucinations, delusions, illusions
• PD psychosis v. Schizophrenia / Schizoaffective disorder
 • Psychosis develops after PD diagnosis
 • Primarily paranoid delusions
 • Visual hallucinations/sensory disturbances (presence hallucinations)
 • Evening time
 • Worsens over time
Psychosis

• PD drugs increase susceptibility to psychosis
 • Hyperensitization of DA receptors in niagrostriatal pathway due to chronic stimulation
 • Misattributions of internal stimuli
 • Dysfunction of limbic structures

• Disease progression and changes in neurochemical processes and structural pathophysiology
Psychosis

Brainstem & Sleep Dysfunction

Visual Dysfunction

Deep Brain Stimulation Surgery

Parkinson’s Disease Medications

Cortical Pathology

Genetics, Neurochemical Abnormalities

Psychosis

• Treatment:
 • Evaluate for underlying condition
 • Reduction of anti-PD drugs
 • Reduce/remove medications that can induce/exacerbate psychosis

Psychosis

• Medications that can induce/worsen psychosis:
 • Tricyclic antidepressants
 • Antihistamines
 • Anticholinergics
 • Amantadine
 • DA agonists
 • COMT inhibitors
 • L-dopa
Psychosis

• Treatment:
 • Evaluate for underlying condition
 • Reduction of anti-PD drugs
 • Reduce/remove medications that can induce parkinsonism
 • Switch levodopa from ER to immediate release
 • Add antipsychotic medication
 • BBW: increased risk of mortality in elderly patients with dementia
 • Second generation antipsychotics
 • Metabolic syndrome
 • Orthostatic hypotension

Clozapine

• Safety, tolerability, efficacy shown in multiple RCT and open label trials
• Psychosis treatment reached in doses as small as 6.25 mg/day
• Minimal effects on tremor/movement symptoms of PD
• Patients must be enrolled in the REMS program
 • Agranulocytosis
• Worsened PD symptoms in doses >150 mg/day
Quetiapine

• 12.5-25 mg at bedtime
 • Studies show tolerability up to 200 mg
• Positive effect on sleep architecture
• Minimal effect on worsening motor symptoms

Psychosis Treatment Misc.

• Risperidone
 • Majority open label studies
 • Mixed results in efficacy
 • Reports of severely worsening motor symptoms

• Ziprasidone
 • Lacks data in regards to proven efficacy
 • Risk of QTc prolongation

• Aripiprazole
 • Studies with small n
 • Significant akathisia reported

Pimavanserin

• First FDA approved medication for PD psychosis
• 5-HT2A receptor inverse agonist
 • No activity on DA receptors like other antipsychotic medications
 • Not found to worsen PD motor symptoms
• 17 – 34 mg daily

• Same safety concerns as antipsychotics:
 • Neuroleptic sensitivity reactions, increased risk of mortality, stroke, and pulmonary embolism, and accelerated cognitive decline
 • Awaiting further post marketing information and longer duration of use

Dementia

• Donepezil
 • Predominately open label studies
 • Modest efficacy in symptoms of dementia and psychosis
 • Lack of statistical significance in trials

• Galantamine
 • Additional MOA of acting on nicotinic receptors
 • Increases release of dopamine
 • Small studies
 • Improvement in dementia symptoms and QOL
 • Worsening of tremor frequently reported

Litvienko IV et al. Neurosci Behav Physiol. 2008 Nov;38(9):937-945
Dementia

• Rivastigmine – approved for PD dementia
 • Dual action: acetylcholinesterase and butyrylcholinesterase inhibitor
 • Improves: cognition, attention and executive functions, ADLs, and behavioral symptoms
 • 3-12 mg/day

Depression

• Underdiagnosed – approx. 50% diagnosed with PD meet criteria for major depressive disorder

• Mixed results with antidepressant therapy:
 • TCA’s
 • Improvement in sleep
 • Paroxetine & Venlafaxine
 • Improvements shown as early as 4 weeks
 • Significant improvements and responsiveness on depression and PD rating scales
Conclusion

• Pharmacotherapy initiation and selection is patient specific
 • Consider factors such as Young-Onset PD, most troublesome PD symptom, etc.

• Monitor patient for difficulties with non-motor symptoms as well as motor symptoms
 • Treatment of psychosis, dementia, and depression improves patient and care giver quality of life

• Target pharmacotherapy to address patient’s most bothersome symptoms
Questions?

Parkinson’s Disease: the ABC’s of PD Drug Therapy

Kimberly Mulcahy, Pharm.D., BCPS
Clinical Pharmacist Buffalo Psychiatric Center NYSOMH
Adjunct Faculty University at Buffalo SoPPS
Kimberly.Mulcahy@omh.ny.gov
kbulcah@buffalo.edu
<table>
<thead>
<tr>
<th>Drug</th>
<th>Company</th>
<th>MOA</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orotidine (ACR325) / Seridopidine (ACR343)</td>
<td>Saniona AB</td>
<td>D$_2$ modulators/stabilizers</td>
<td>Phase 2</td>
</tr>
<tr>
<td>AE04621 / AC04621</td>
<td>Lundbeck</td>
<td>D$_1$/D$_2$ agonist</td>
<td>Phase 1</td>
</tr>
<tr>
<td>PF-06649751</td>
<td>Pfizer</td>
<td>D$_1$ agonist</td>
<td>Phase 2</td>
</tr>
<tr>
<td>IRL-790</td>
<td>Integrated Research Laboratories</td>
<td>D$_2$ agonist</td>
<td>Phase 1b</td>
</tr>
<tr>
<td>LY3154207</td>
<td>Eli Lilly</td>
<td>D$_1$ potentiator</td>
<td>Phase 1</td>
</tr>
<tr>
<td>CLR4001</td>
<td>Clera Inc.</td>
<td>D$_2$ agonist</td>
<td>Phase 2a</td>
</tr>
<tr>
<td>SLS-006</td>
<td>Seelos Therapeutics/Pfizer</td>
<td>D$_2$/D$_3$ partial agonist</td>
<td>Phase 3</td>
</tr>
<tr>
<td>RP-5063 / RP-5000</td>
<td>Reviva Pharmaceuticals</td>
<td>D2/D3/5HT${1A}$/5HT${2A}$ partial agonist, 5HT$_6$/5HT$_7$ antagonist</td>
<td>Phase 2</td>
</tr>
<tr>
<td>KDT3594</td>
<td>Kissei Pharmaceuticals</td>
<td>D$_2$ agonist</td>
<td>Phase 1</td>
</tr>
<tr>
<td>YKP-10461</td>
<td>SK Biopharmaceuticals/Celerion</td>
<td>Reversible MAO-B inhibitor</td>
<td>Phase 1</td>
</tr>
<tr>
<td>ODM-104 (in combo with l-DOPA)</td>
<td>Orion Pharma</td>
<td>COMT inhibitor</td>
<td>Phase 2</td>
</tr>
<tr>
<td>SAGE-217</td>
<td>Sage Therapeutics</td>
<td>GABA modulation</td>
<td>Phase 2</td>
</tr>
<tr>
<td>ODM-106</td>
<td>Orion Pharm</td>
<td>GABAB receptor modulator</td>
<td>Phase 1</td>
</tr>
<tr>
<td>KW-6356</td>
<td>Lundbeck/Kyowoa Hakko Kirin</td>
<td>adenosine$_{2A}$ antagonist</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Tozadenant (sYN-115)</td>
<td>Roche/Biotie Therapies</td>
<td>adenosine$_{2A}$ antagonist</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Eltoprazine</td>
<td>Roche/Biotie Therapies</td>
<td>5HT${1A}$/5HT${1B}$ agonist, 5HT$_{2C}$ antagonist</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Landipirdine (SYN-120)</td>
<td>Biotie Therapies</td>
<td>5HT6/5HT${2A}$ antagonist</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Foliglurax (PXT-002331)</td>
<td>Prexton Therapeutics</td>
<td>Glutamate modulator</td>
<td>Phase 2</td>
</tr>
</tbody>
</table>

Appendix A

UK Parkinson’s Disease Society Brain Bank for diagnosing Parkinson’s disease:

• Bradykinesia and at least one of the following:
 • Rigidity
 • Resting tremor
 • Postural instability not caused by primary visual, vestibular, cerebellar or proprioceptive dysfunction

• Exclusion of other causes of parkinsonism

• At least three of the following supportive (prospective) features:
 • Unilateral onset
 • Persistent asymmetry primarily affecting the side of onset
 • Resting tremor (hand, leg or jaw, asymmetric, disappears with action)
 • Excellent response to levodopa (70-100%)
 • Progressive disorder
 • Severe levodopa-induced chorea (dyskinesias)
 • Levodopa response for five years of more
 • Clinical course of 10 years or more

Appendix B

Differentiating between PD and Essential Tremor

<table>
<thead>
<tr>
<th></th>
<th>PD</th>
<th>Essential Tremor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>>60 y/o</td>
<td>Any</td>
</tr>
<tr>
<td>Facial Expression</td>
<td>Reduced</td>
<td>Normal</td>
</tr>
<tr>
<td>Family History</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Gait</td>
<td>Unstable</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Freezing</td>
<td></td>
</tr>
<tr>
<td>Muscle Tone</td>
<td>Weakness, cogwheel rigidity</td>
<td>Normal</td>
</tr>
<tr>
<td>Tremor Characteristic</td>
<td>Resting (pill rolling)</td>
<td>Postural</td>
</tr>
<tr>
<td></td>
<td>Unilateral</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>