Choosing Vascular Access in CKD/ESRD patients

Anil K. Agarwal, MD, FACP, FASN, FNKF, FASDIN
Professor of Clinical Medicine
Chief of Nephrology at University Hospital East
Director, Interventional Nephrology
The Ohio State University
College of Medicine and Public Health
Columbus, Ohio
Nephrology News & Issues
NORTH AMERICA

Vascular Access:
The Achilles' Heel of Dialysis

- Total allowed physician charges in 1999 for shunt creation procedures: $31 million
- Shunt complications: $19 million
- Inpatient covered charges for shunt creation and complications: $335 million

Plus: A Special Section on Water Treatment
Vascular Access: K/DOQI Guidelines

● AV fistula (AVF) is preferred.
 - Place AVF when-
 - serum creatinine > 4 mg/dL,
 - creatinine clearance < 25 mL/min, or
 - anticipation of RRT within a year

● AV graft (AVG)-
 - if unable to place AVF, or
 - failed attempt at AVF

● Catheters
 - should not be used as permanent access

Vascular Access Options

In ‘traditional’ order of preference-
- Primary AV Fistula
- Secondary AV Fistula
- Transposed AV Fistula
- AV Grafts
- Catheters
AV Fistula- Many Possible Sites

- Wrist (radio-cephalic) AVF
- Elbow (brachio-cephalic) AVF
- Brachio-basilic transposition AVF
- Synthetic arteriovenous graft – forearm, upper arm
- Secondary AVF
- Others – femoral, axilloaxillary, iliac femoral
AV Fistula

Pros
- High patency rate
- Low infection rate
- Low arterial steal rate with distal sites

Cons
- Frequent suboptimal veins
- High early failure rate (upto 40%)
AV Grafts

- Synthetic - placed if native AV fistula is not possible
- Synthetic materials include
 - PTFE
 - Vectra
 - cryopreserved artery/vein
 - bovine carotid artery
 - Vein allografts (long saphenous, human umbilical vein)
AV Grafts

Pros
- Short maturation time
- Easy to use/cannulate
- Multiple insertion sites and configurations
- Easy to declot/revise
- Better patency with better surveillance

Cons
- Synthetic- incites reaction
- Twice the rate of infection and 1.2 x the sepsis than AVF
- Lower patency than AVF- 4x thrombosis, and twice the rate of angioplasty
- Arterial steal in upper AVG
PTFE Grafts- Patency Rates

- Primary Patency rates for AV grafts of 70% at 1 year, 60% at 2 year, 50% at 3 year
- 3 year secondary patency rates 40-87% (mostly around 50%)
- Secondary patency rates for PTFE achieved at expense of 3-6 fold greater intervention rate
Permanent Catheters and Ports—Necessary Evils

Pros

● Easy outpatient insertion/removal
● Multiple sites
● Immediately available for HD
● No needlesticks

Cons

● Not adequate blood flow for long
● High infection rates
● May cause venous stenosis
● Cannot swim or take shower
Many Clinical Practice Guidelines!

- KDOQI 2006. CPG 2.1
- British Renal Association 1.1
- European Best Practice Guideline 3.2
- Canadian Society of Nephrology 1.3

Autogenous arteriovenous** fistulæ** should be **preferred over AVG** and AVG should be **preferred over catheters**
So, Which Access Should We Choose?

Need to answer the following questions:

– Is AVF always better than AVG?
– Is AVF ideal for everyone?
– When should one create an AV access?
– Do patient related factors (age, comorbidities) matter?
Is AVF always better than AVG?

<table>
<thead>
<tr>
<th>N</th>
<th>AVF</th>
<th>AVG</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary failure rate</td>
<td>46.4%</td>
<td>20.6%</td>
<td>0.001</td>
</tr>
<tr>
<td>Time to adequacy (days)</td>
<td>87 ± 40</td>
<td>18 ± 4</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Declot (year)</td>
<td>0</td>
<td>0.98</td>
<td>< 0.001</td>
</tr>
<tr>
<td>PTA (year)</td>
<td>0.38</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Surgical revision (year)</td>
<td>0.19</td>
<td>0.20</td>
<td>0.94</td>
</tr>
<tr>
<td>Total interventions (year)</td>
<td>0.57</td>
<td>1.67</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

N= 217 AV accesses

Allon 2001. KI 60: 2013-20
AVF and AVG - Cumulative Survival

Cumulative access survival (time from access creation to access failure), including primary access failures ($P = 0.97$)

Cumulative access survival (time from access creation to access failure), excluding primary access failures ($P = 0.03$)

Cumulative Survival of AVF and AVG at a Single Dialysis Facility

2004-2008

2009-2013

1 Derived from data residing in chair-side computing system, by rule-based algorithm

2 Provided by Dr. Chaim Charytan, Dr. Stephen Ash, and Vasc-Alert, LLC
COMPETING RISKS - ESRD Vs. DEATH

Risk of death > risk of ESRD

Risk of ESRD > risk of death

O'Hare et al. JASN 2007: 18; 2758-2765
Life Expectancy Trade-Off With Vascular Access

- Patients with life expectancy <3–6 months
 - No benefit of AVF placement due the maturation time
- A life expectancy of >1 year is needed to derive benefit

Moist L et. al Seminars in Dialysis 2011
Lee t et al – CJASN 2007
AVF Vs. AVG in the Elderly Patient: Advantages?

- **Infection** – 200 AVF to prevent one episode of AVG related infection (Kurella et al, KI 2012)

- **Survival** - No benefit for patients >80 yrs, but high CVC use vs AVG (43% vs 25%) (DeSilva et al JASN 2013)

Worse patency of AVF than younger patients and less likelihood of accessing AVF for HD in elderly (Richardson et al, J Vasc Access 2009, O’Hare et al KI 2007)
The Heart Failure Patient

- Both AVF and AVG can increase CV risks:
 - Increased cardiac output
 - Pulmonary hypertension
 - LVH and diastolic dysfunction
- In mild CHF, AVF may be tolerated, but avoid high flow AVF
- NYHA class III and IV - Consider PD
- A ‘planned’ tunneled catheter may be a reasonable choice
The Diabetic Patient

- Diabetics have overall poor circulation
 - Calcified arteries
 - Poor veins
 - Repeated venipunctures
- Higher incidence of steal in upper arm AVF
- Evaluate vessels prior to access creation
- Prefer mid forearm AVF
And The Obese Patient

- Obesity (often associated with diabetes)- poor vasculature
- Deeper veins, pressure of soft tissue- especially in axilla
- But, veins likely spared from venipuncture
- May be able to get AVF with transposition and liposuction or fat removal surgically
- Primary and secondary failure are higher than in non-obese

Kats et al. KI 2007;71:39
Access in Patient with Other Co-morbidities

- Good history and physical examination are essential for planning vascular access placement
- Consider situations like
 - Previous CVA
 - Mastectomy
 - Cardiac implantable electrical devices
- Choice of extremity and location may have to be changed
Access in Patient with Failing AV access, Transplant or PD

- Failing transplant/PD- Evaluate early for an AV access
- AV access with frequent thromboses, angioplasties or pseudoaneurysms- Consider secondary AV fistula
- Existing tunneled catheter- check venogram for presence of central vein stenosis before creation of new access
For Those with Failing Access: Secondary AV Fistula

Fig. 1. (a) Forearm arteriovenous graft (AVG) in use prior to conversion to Type I secondary arteriovenous fistula (SAVF). (b) Forearm AVG conversion to Type I SAVF (postoperative).

Intractable Central Vein Stenosis: Hybrid Graft-Catheter

HeRO™ Graft

Gore Hybrid Graft™
Individualizing Access: Points to Ponder

- Mature AVF is better than AVG
- Immature AVF requires more salvage procedures, prolonged catheter use- sepsis, central vein stenosis- **NOT** Better than AVG
- Life expectancy of the patient (elderly, terminal illness with palliative dialysis), competing risks-ESRD and death
- Comorbidities- CHF (fistula toxicity), PVD, obesity

Allon M and Lok CE Clin J Am Soc Nephrol. 2010
Unintended Consequences of ‘One Size Fits All Approach’

- Less ‘individualized’ patient management
- Limited ability of the physician to prescribe appropriate access
- Possible adverse outcomes (a’ la increased transfusion rates in anemic patients with restricted ESA use)
- Possibility of individual harm
- Increased cherry picking- difficult access for sick patients unable to get AVF
- Decrease innovation and product development
Approaches:
Clinical use of the scoring system

<table>
<thead>
<tr>
<th>Variable</th>
<th>Points</th>
<th>Score</th>
<th>Variable definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 65 yrs</td>
<td>+2</td>
<td>+2</td>
<td>age at time of AVF creation</td>
</tr>
<tr>
<td>PVD</td>
<td>+3</td>
<td>+3</td>
<td>documented lower extremity revascularization, digit or extremity amputation, history of claudication and ischemic extremity changes or gangrene</td>
</tr>
<tr>
<td>CAD</td>
<td>+2.5</td>
<td>+2.5</td>
<td>documented coronary stenosis by angiography or history of MI or previous coronary revascularization by angioplasty, stenting or bypass surgery</td>
</tr>
<tr>
<td>White</td>
<td>-3</td>
<td>-3</td>
<td>not of black, Asian, aboriginal or other non-European descent</td>
</tr>
<tr>
<td>baseline score</td>
<td>+3</td>
<td>+3</td>
<td>all patients are given baseline score of +3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>+3</td>
<td>sum of all scores</td>
</tr>
</tbody>
</table>

Lok CE 2006. JASN 17: 3204-12
Risk of Fistula Non-Maturation

Lok 2006. JASN 17: 3204-12
Proposed Algorithm

Individualizing Vascular Access: AVF or AVG?

Mr. Doe
- 76-years old
- Diabetic
- CAD with EF 20%
- CVA x 2
- Lives in a NH
- Barely manages ADL

AVG

Mrs. Smith
- 76-years old
- HTN
- Active, volunteers 20hrs/week
- Independent

AVF
We Know We Must Individualize