It's All About That Base: Gluteal Function and Activation After Stroke

What to Expect

- Discussion on improvement of walking after stroke
- Review observational gait analysis and problem-solving for individuals with stroke
- Often misunderstood function of our "Base"
- Supine Hip Extensor Manual Muscle Test
- Activities to increase hip muscle activation and improve strength
 - To improve walking ability and quality of life after stroke

Ground Reaction Force Vector
Ground Reaction Force Vectors

Weakness
- Avoid torque demand to the muscle
- Allow other muscles to take over
- Find stability and sacrifice forward progression

Hip Problems in Stroke

Past Retract / Decreased Step

Collapse into flexion during Weight Acceptance

Ground Reaction Force Vector

Lateral Lean During Stance
Contralateral Pelvic Drop

Excess Backward Rotation

Demand Exceeds Capacity

Patient Example

- D. M.
- 49 years old
- Husband, father, businessman
- Owns his own mini-market
- Enjoys soccer
- Wants to walk “better”

“I want to walk better”
Improvement

• “I want to walk better”

• What does the literature say about improvement in walking after stroke?

Classification of Walking Handicap in the Stroke Population

• Muscle strength, proprioception, walking velocity, functional walking ability at home and in the community

• **Gait speed** was best predictor of walking classification, and participation of mobility in home and the community

 – Perry, Garrett, Gronley, Mulroy – 1995

Classification of Walking Handicap in the Stroke Population

- <0.4 m/s - Household
- >0.4 - <0.8 m/s - Limited community
- >0.8 m/s - Community
- Normal = 1.3 m/s

 – Perry, Garrett, Gronley, Mulroy – 1995

Improvements in Gait Speed are Meaningful

• Function and quality of life measures (SIS) were significantly higher for those who transitioned to a higher level of ambulation

How Do We Increase Speed?

• Increase stride length
 – Normal stride is 1.3 meters

• Increase in cadence
 – Normal cadence is 115 steps/minute

What Happens?

• Increases ground reaction forces
• Increases torque demand
• Weight Acceptance
 – Hip Extensors
 – Quadriceps
• Single Limb Support
 – Hip Abductors
 – Plantar flexors
• Swing Limb Advancement
How do Individuals Increase Walking Speed after Stroke?

What do we know about walking after experiencing a stroke?

Scientific Literature

• Use of Cluster Analysis for Gait Pattern Classification of Patients in the Early and Late Recovery Phases Following Stroke

Motion Analysis

Fine Wire EMG

EMG Muscle Test
- Firing pattern while walking
- Intensity
- Timing
- Quick stretch
 - Duration
 - Intensity

Isometric Torque Testing
- Hip extensors
- Hip abductors
- Knee extensors
- Knee flexors
- Ankle dorsiflexors
- Ankle plantar flexors

Classification of Gait Patterns after Stroke
Mulroy et al, 2003

Cluster Analysis: Flexed
- 27% Normal Speed
- 18° Knee flex TSt
- 39° Knee flex PSw

Mulroy et al., 2003
Cluster Analysis: Extended

- 20% Normal Speed
- 7° Knee hyperextension
- 18° Knee flexion

- Mulroy et al., 2003

Rehab Admission Strength

Six Month Strength

Cluster Analysis

- Plantar flexors, dorsiflexors weaker in Flexed and Extended groups
- Hip extensors weaker in Flexed
- Knee extensors weaker in Extended

- Mulroy et al., 2003

Cluster Analysis: Summary

- We have distinct groups
- Based on observed gait patterns & speed
- Pattern of weakness differentiates grouping, not spasticity
- Improved gait speed at 6mo related to increased EMG activation and improved strength

- Mulroy et al., 2003

Cluster Analysis: Summary

- We have distinct groups
- Based on observed gait patterns & speed
- Pattern of weakness differentiates grouping, not spasticity
- Improved gait speed at 6mo related to increased EMG activation and improved strength
- Low responders had reduced gluteal and calf EMG

- Mulroy, Gronley, Weiss, Newsam, Perry 2003
“I Want to Walk Better…”

- Transition to a higher functional level
- Increase speed
 - Increased strength key muscles
 - Increased muscle activity key muscles

Recent Findings in Kinetics

- Less time in single limb stance on hemi limb
- Step length asymmetry affects forward propulsive force generation

- Balasubramanian et al, 2007

Forward Propulsion Mechanics

- Anterior-posterior GRF
- Force that acts to propel body forward
- Reduced on hemi side
- $F_a = 1/d^*M_a\sin(TLA)_{vop1}$

- Hsiao et al, 2015

Breaking & Forward Propulsion Forces

Walking faster after stroke

- Main power burst in hemi & normal walking:
 - Hip extension moment at LR
 - Hip abduction moment at MSR
 - Ankle plantar moment at TSS/PSw
 - Hip flexion moment at PSw/Sw

- Mutroy, Kautz, Sullivan, 2014
Joint Powers

Lateral Weight Shift

- Control of lateral weight shift is associated with walking speed in individuals post-stroke

- Hsiao, Gray, Creath, Binder-Macleod, Rogers, 2017

Excess Hip Abduction in Stance

Slower Walkers

- Delayed and deficient weight transfer to paretic limb
- More lateral paretic limb placement
- COM further from COP
- Lower hip abductor moment

- Hsiao, Gray, Creath, Binder-Macleod, Rogers, 2017

Improved Gait Speed After Stroke

Mechanics After Treatment

- FES plantarflexors/dorsiflexors
- Fast walking on treadmill
 - Trailing limb angle most important contributor to increasing gait speed
 - Plantar flexion moment (internal) at TSt/PSw

- Hsiao, Knarr, et al. 2015, 2016

- Mulroy, Klassen, Gronley, Eberly, Brown, Sullivan - 2010
Different Strategies to Increase Speed after Stroke

- Forward propulsion asymmetry between legs
- Some increased speed via non-paretic plantar flexor propulsion
- Some increase speed via paretic leg plantar flexor propulsion

– Allen, Kautz, Neptune, 2014

Capacity to Increase Walking Speed After Stroke

- Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait and Posture

– Jonkers I, Delp S, Patten C. 2009

Capacity to Increase Walking Speed After Stroke

- Those who were able increased plantar flexor power, and hip flexor power during PSw
- Low functioning patients increased power in the non-hemi limb

– Jonkers, Delp, Patten 2009

Recovery vs. Compensation

- Lower level patients walked faster by improving forward propulsion forces from non-hemi limb
- Higher level patients walked faster by improving forward propulsion forces in both hemi and non-hemi limb.

- Jonkers, Delp, Patten 2009
I Want to Walk Better:

- Transition to a higher functional level
- Increase speed using recovery model
 - Large step
 - Increased hip extensor & abductor moment, EMG & strength
 - Shift body weight medially onto stance limb
 - Increase hip abductor moment
 - Increased forward propulsion forces - hemi side
 - Increased calf EMG & plantar flexion moment
 - Increased hip extension angle at TSt
 - Large step on opposite limb
 - Trailing Limb Posture
 - Increased hip flexion power at PSw/ISw

Influence of Trailing Limb

It's All About That Base: Gluteal Function and Activation After Stroke - CPTA 2017
San Diego, CA
September 16, 2017

CPTA 2017, San Diego, CA
This material is property of Walt Weiss PT, MPT.
Please do not copy without permission from the author
Passive Contributions to Moments/Powers - Whittington 2008

Impaired Trailing Limb
- No heel rise
- Small opposite step
- Inadequate hip ext
- Pelvis dropped out
- External rotation hip:
 - Pelvic hike
 - Abduction
 - Lean laterally
 - Contralateral vault

“All About that Base”
- Gluteal “Base” holds pelvis and trunk stable during Weight Acceptance
- Initiating forward progression
- Gluteal base holds pelvis stable in frontal and transverse plane
- Calf “Base” contributes to forward propulsion
- Stable trailing limb positions for passive components of swing

“I want to walk better”
- To return to work in the mini-market
- To be able to play with my daughter
 - Walk farther
 - Walk faster
 - Walk comfortably in confined spaces
 - Quick turns, obstacles, etc

Observational Gait Analysis
Summary of Stride Characteristics

- Velocity: 12 M/min 15% N
- Cadence: 48 Steps/min 42% N
- Stride Length: 0.54M 35% N
Early Mid Stance

Mid Stance

Terminal Stance

Pre Swing

- Low force vector
- Force vector very close to ankle joint center
 - Low plantar flexion internal moment
- COM is not in front of the force vector
- There is no trailing limb angle
- No forward propulsion mechanics
Pre Swing

- Force vector moves forward only after opposite foot makes contact

Terminal Stance

Initial Swing

Pre Swing

SAGITTAL PLANE KINETIC ANALYSIS
PATHOPHYSIOLOGY LAB, RANCHO LOS AMIGOS NATIONAL REHABILITATION CENTER

It's All About That Base: Gluteal Function and Activation After Stroke - CPTA 2017
San Diego, CA

September 16, 2017

CPTA 2017, San Diego, CA
This material is property of Walt Weiss PT, MPT.
Please do not copy without permission from the author
Let's Talk About Strength…

DIAGNOSIS: Right Hemisphere Stroke
HISTORY: HTN
LEFT LOWER EXTREMITY:

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Strength</th>
<th>ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion</td>
<td>2°</td>
<td>15 - 120</td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td>0 - 20</td>
</tr>
<tr>
<td>Abduction</td>
<td></td>
<td>0 - 20</td>
</tr>
<tr>
<td>KNEE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion</td>
<td>0 - 135</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>0 - 135</td>
<td></td>
</tr>
<tr>
<td>Hyperextension</td>
<td>0 - 10</td>
<td></td>
</tr>
<tr>
<td>ANKLE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsiflexion</td>
<td>2°</td>
<td>0 - 10</td>
</tr>
<tr>
<td>Plantar Flexion</td>
<td>2°</td>
<td>0 - 10</td>
</tr>
<tr>
<td>SUBTALAR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversion</td>
<td>2°</td>
<td>5 - 20</td>
</tr>
<tr>
<td>Eversion</td>
<td></td>
<td>0 - 4</td>
</tr>
</tbody>
</table>

Tone: Mild increase for calf, adductors with quick stretch
Tactile: Normal
Proprioception: Normal: hip & knee, impaired: ankle & toes

It's All About That Base: Gluteal Function and Activation After Stroke - CPTA 2017
San Diego, CA
September 16, 2017
Strength is Good

Any Questions?

Jacqueline Perry, MD

Treatment Focus for Walking Faster

1. Load onto a fully outstretched limb & maintain hip stability
 - Inverted ankle
 - Weak gluteals
2. Progress body weight forward during stance
 (forward propulsion mechanics)
 - Weak calf
 - Tight Achilles
 - Weak glut med
3. Attain a trailing limb posture
4. Improved hip/knee flexion during swing

All About That Base?

- Weak hip extensors and abductors:
- Reduced loading forces by past-retract and small ipsilateral step length
- Unwilling to progress body weight forward

- Weak calf and hip abductors:
- Unwilling to progress onto limb & forward in late stance
- Poor trailing limb sets up for impaired swing mechanics:
 - Hip flexor power generation

- Hip extensors
- Hip abductors
- Soleus/Gastroc
I Want to Walk Better:

• Transition to a higher functional level
• Increase speed using recovery model
 – Large step
 – Increased hip extensor & abductor moment, EMG & strength
 – Shift body weight medially onto stance limb
 • Increase hip abductor moment
 – Increased forward propulsion forces - hemi side
 • Increased calf EMG & plantar flexion moment
 – Increased hip extension angle at TSt
 • Large step on opposite limb
 • Trailing Limb Posture
 – Increased hip flexion power at PSw/Sw

Is an AFO Indicated?

AFO Design

Rigid (R) Plantar Stop (PS) Dorsi Stop (DS)

Each AFO worn ≥ 2 weeks prior to testing

Conclusion

• All AFOs improved heel first contact and foot clearance in swing.
• Plantar flexion contracture affects performance in an AFO
 – With a contracture: unable to utilize the different brace settings in stance
 – No contracture: an articulating AFO improved gait and a Rigid AFO impeded gait

- Mulroy, Eberly, Gronley, Weiss, Newsam 2010

Conclusion

• Calf EMG intensity did not decrease when walking in a brace
• Anterior Tibialis EMG did not decrease in articulating AFOs
 – Mild decrease in swing in rigid AFO

- Mulroy, Eberly, Gronley, Weiss, Newsam 2010
Why Not Faster Initially in AFO?

- Walking speed improved in 4 of 10 subjects in the AFO
- Changes in speed, stride length and cadence correlated with hip extension strength ($r=0.63$)
- The ability to improve gait speed when wearing an AFO was dependent on hip extension strength

Hip Strength & AFO
- 10 subjects with MCA stroke
- Tested in and out of own AFO

- Walking speed improved in 4 of 10 subjects in the AFO
- Changes in speed, stride length and cadence correlated with hip extension strength ($r=0.63$)
- The ability to improve gait speed when wearing an AFO was dependent on hip extension strength

- With increased stability at the ankle the demand of forward progression of the body weight shifted to the hip
- Only those individuals strong enough to handle the increased torque demands from increased stride length or cadence were able to walk faster in their AFO

Hip Strength & AFO
- With increased stability at the ankle the demand of forward progression of the body weight shifted to the hip
- Only those individuals strong enough to handle the increased torque demands from increased stride length or cadence were able to walk faster in their AFO
AFO

- Dorsi stop recommended to stabilize tibia
- Tibial restraint may create the need to lean forward to allow forward progression
- Increases the demand on the hip extensors

- Weiss et al. 1999

Testing Hip Extensor Strength

- Difficulty attaining prone
- Tight hip flexors
- Hemi shoulder pain

Supine Hip Extensor Manual Muscle Test

Jacquelin Perry, MD

- Test Creator
- Polio Clinic
 - spinal fusions
 - hip flexion contracture
 - large abdomen
 - pulmonary problems
Purpose
To identify a valid and reliable supine testing technique for hip extensors that differentiates 4 levels of strength

Subjects
• Validation and definition
 N = 44 (polio, GB, OA, cauda equina)
 Mean age 52
• Reliability
 N = 16 (post polio syndrome)
 Mean age 51

Validation & Definition
• Supine test performed
• Grade assigned
• Grades confirmed by video
• Maximum isometric torque

Supine Test
• Feet over edge
• Press downward
• Tester lifts heel

Grade 5 (Normal)
• Hip locks in neutral
Grade 4 (Good)
- Unable to lock hip
- Strong resistance
- Requires more than 30° before locking hip

Grade 3 (Fair)
- Greater hip flexion:
 - Fiber length, lever arm
 - Mechanical advantage
 - Increases force production

Grade 2 (Poor)
- Slight resistance

Biomechanical Rationale

Biomechanical Rationale

- Waters 1974

Hip extensor torque
Data Analysis

- One-way ANOVA
- Torque between subjects grouped by muscle test grades

Isometric Torque

* (p < .01)

Normalized Torque

Relative Strength

Supine Hip Extensor Manual Muscle Test

- Valid
- Reliable
- Accurately differentiates 4 grades similar to prone test

Clinical Relevance

- Convenient clinical assessment
- Avoids difficulties associated with prone positioning
What We’ve Learned:

- Lift limb higher & hold for several seconds
- Downgrade if need more than 30° to lock hip
- Fold arms across chest

Now What?

- We understand what is needed for improved walking after stroke
- We understand the impact of gluteal weakness in stroke
- We know how to test for weakness
- What should we do to treat?

Treatment Focus #1

- Load fully onto an outstretched limb
 - Inverted ankle
 - Weak gluteals

Best Hip Extensor & Abductor EMG?

- Fine Wire EMG
- Traditional exercises
- Functional activities:
 - Lower Gluteus Max
 - Add Magnus
 - Biceps Femoris
 - Semimembranosus
 - Upper Gluteus Max
 - Gluteus Medius

Traditional Extension Strengthening
Lower Glut Max: Low vs High Fugyl-Meyer

Hip Exercise Summary
- Supine hip abduction poor EMG
- Prone hip abduction better
- Prone hip extension excellent EMG
- Higher functioning – similar to non-stroke population
- Lower functioning –
 - Weight bearing
 - Functionally based
 - Goal oriented

Hip EMG on Stairs
- Increased lower glut max ascending stairs
- Prolonged glut med ascending stairs
- Prolonged upper glut max ascending stairs
- Decreased EMG descending stairs
 - Perry 1975
Key Concept

- **Forward lean** is key to activating gluteals
- To turn off hamstrings: clams, kneel walk, sit to stand, step up

How to Modify Weight-Bearing and Functional Exercises

- Glut Max EMG - 22% MVC
- Glut Max EMG - 60% MVC
- Glut Max EMG - 108% MVC

Principles of Recovery

- Prime System with Aerobic Exercise
- High Intensity, High Challenge
- Forced Use Paradigm
- Task Specificity
- Targeted with External Focus
- Positive & Empowering Feedback

Hip Hike

Hip Hike?

Glut Med Step-Hike

Weight-Bearing, Functional, Targeted

How Do We Shift Weight Onto Hemi Limb?

PVC Cage for Narrow Base

It's All About That Base: Gluteal Function and Activation After Stroke - CPTA 2017
San Diego, CA
September 16, 2017

CPTA 2017, San Diego, CA
This material is property of Walt Weiss PT, MPT.
Please do not copy without permission from the author
Over Ground Narrow Base

- Constraining movement reveals motor capability in chronic stroke: an initial study. *Clinical Rehab* 2017
 - Improved hip & knee flexion during swing
 - Improved step width
 - Improved paretic step length

- Martinez, Mintz, Ecsedy, Fisher 2017

What About the Calf?

Modified Heel Rise EMG

- Soleus EMG 55% MVC
- Soleus EMG 105% MVC

Calf Strengthening
Questions?

Walt Weiss
wweiss@dhs.lacounty.gov
Allen J, Kautz S, Neptune R. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis. *Clinical Biomechanics* 2014:06.001

Bowden MG, Balasubramanian CK, Neptune RR, Katz SA. Anterior/posterior ground reaction forces as a measure of paretic leg contribution in hemiplegic walking. *Stroke*, 2006; 37: 872-876

David J. Clark D, Patten C. Eccentric Versus Concentric Resistance Training to Enhance Neuromuscular Activation and Walking Speed Following Stroke. *Neurorehabil Neural Repair* published online 4 January 2013

Eng JJ, Mulroy SJ. *Stepping Forward with Gait Rehabilitation*. *PT Journal*, 2010

Finley, Perreault, Daher. Stretch Reflex Coupling between the hip and knee: implications for impaired gait following stroke. *Experimental Brain Research*. 2008; 188:4

All About That Base – Walt Weiss, MPT, NCS

CPTA 2017

Neptune, Kautz, Zajac. Contributions of the individual plantar flexors to support, forward progression, and swing initiation during walking. *Journal of Biomechanics* 2001;34:1387-98

Pattern et al. Gait speed improves significantly following dynamic high intensity resistance training in persons post stroke. *Stroke* 2007; 38: 466-467

Weiss WB, Mulroy SJ, Gronley JK, Perry J. Rigid AFO Impairs Walking Ability in Individuals with Hemiparesis from CVA. *Gait and Posture,* 2002;16(S1):82-82
