Objectives

Upon completion of this course, you will be able to:
1. Provide a current definition of chronic inflammation.
2. Describe the evidence that chronic inflammation plays a role in the development & propagation of atherosclerosis, some neurodegenerative disorders and some forms of cancer.
3. Explain the impact of anti-inflammatory medications on chronic inflammation.
4. Discuss the impact of obesity and physical activity on chronic inflammation.

The Problem

- Chronic Noncommunicable Diseases (CNDs)
 - 60% of deaths worldwide
 - Cardiovascular disease
 - Breast & colorectal cancer
 - Chronic lung diseases
 - Neurodegenerative disorders
 - Insulin disorders

Acute Inflammation

- Characteristic response
 - Multiple chemical mediators released
 - "Cytokines"
 - Low molecular weight glycoproteins
 - Interferons
 - Used to fight viral infections
 - Interleukins
 - Modulate inflammatory processes

Inflammation, Atherosclerosis, Neurodegeneration and Cancer

- Acute and chronic inflammation
 - Overview of inflammatory markers
- Chronic inflammation and atherosclerosis
 - C-reactive protein and atherosclerosis
- Chronic inflammation and neurodegenerative disorders
 - Multiple sclerosis
 - Parkinson disease
 - Alzheimer disease
- Chronic inflammation and cancer risk
 - Overall, breast and colorectal cancer risk

The Problem

- Chronic Noncommunicable Diseases (CNDs)
- Acute and chronic inflammation
- Overview of inflammatory markers
- Chronic inflammation and atherosclerosis
- C-reactive protein and atherosclerosis
- Chronic inflammation and neurodegenerative disorders
- Multiple sclerosis
 - Parkinson disease
 - Alzheimer disease
- Chronic inflammation and cancer risk
 - Overall, breast and colorectal cancer risk

Brad Stockert, PT, PhD
Professor of Physical Therapy
California State University, Sacramento
Acute Inflammation

- characteristic response
 - multiple chemical mediators released
 - sources of interleukins (ILs) during acute inflammation
 - mast cells
 - macrophages
 - lymphocytes

Sequential appearance of interleukins:
- tumor necrosis factor-alpha (TNF-α)
- interleukin-1 beta (IL-1β)
- interleukin-6
- interleukin-1 receptor antagonist (IL-1ra)
- soluble tumor necrosis factor-alpha receptor (sTNF-R)

Sequential appearance of cytokines:
- interleukin-6 (IL-6)
- secreted after TNF-α & IL-1β
- secreted before IL-1ra & sTNF-R

Changes in Interleukins with Sepsis

- pro-inflammatory
 - TNF-α
 - IL-1
 - IL-6
 - sTNF-R
 - IL-1ra

- anti-inflammatory
Acute Inflammation

- characteristic response
- sequential appearance of cytokines
 - interleukin-6 (IL-6)
 - stimulates liver production & secretion
 - “acute-phase response” proteins in blood

Acute Inflammation

- characteristic response
- sequential appearance of cytokines
 - “acute-phase response” proteins in blood
 - sensitive markers of inflammation
 - erythrocyte sedimentation rate (ESR)
 - C-reactive protein (CRP)
 - CRP strongly associated with CNDs

Chronic Inflammation

- characterization in absence of acute inflammation
 - persistent 2-3 fold increase in pro-inflammatory cytokines
 - TNF-α
 - IL-6
 - persistent 2-3 fold increase in inflammatory markers
 - CRP
 - ESR

Chronic Inflammation

- characterization in absence of acute inflammation
 - 2-3 fold increase in pro-inflammatory cytokines & markers
 - advanced age (>50 y.o.)
 - obesity
 - smoking
 - atherosclerosis
 - insulin-related disorders

Endocrinology of Adipose Tissue

- Adipose tissue secretes
 - hormones
 - leptin & adiponectin
 - regulation of body weight, insulin sensitivity and fuel oxidation

Endocrinology of Adipose Tissue

- Adipose tissue secretes
 - hormones
 - leptin & adiponectin
 - “adipokines”
 - cytokines (interleukins) from adipose tissue
 - TNF-α
 - IL-6
 - CRP
Endocrinology of Adipose Tissue

- **Adipose tissue secretes: TNF-α**
 - adipose tissue is main source without acute inflammation
 - level proportional to obesity
 - level decreases with weight loss
 - level proportional to insulin resistance
 - TNF-α impairs insulin receptors

- **Adipose tissue secretes: IL-6**
 - 30% of IL-6 in nonobese individuals at rest
 - level of IL-6 elevated with obesity
 - main source of IL-6 with obesity
 - visceral fat > subcutaneous fat
 - level of IL-6 is proportional to insulin resistance
 - impairs insulin receptors
 - increases resting level of CRP

- **Adipose tissue secretes: CRP**
 - indicator of pro-inflammatory state
 - strong predictor of future problems
 - insulin-related disorders
 - vascular diseases: atherosclerosis & dementia
 - amplifies impact of other pro-inflammatory cytokines
 - suppresses fibrinolysis
 - enhances thrombus formation

- **Obese individuals**
 - obesity is strongly associated with chronic inflammation
 - elevated level of pro-inflammatory mediators & markers
 - TNF-α
 - IL-6
 - CRP
 - increased incidence vascular & insulin-related disorders
Endocrinology of Adipose Tissue

- **Obese individuals**
 - increase risk of developing
 - **vascular disorders**
 - atherosclerosis (MI, CVA, some dementias)
 - dyslipidemia
 - hypertension
 - erectile dysfunction
 - **insulin-related disorders**
 - insulin resistance
 - type II diabetes

Endocrinology of Muscle

- **Muscle tissue**
 - largest body tissue in nonobese
 - secretes hormones & interleukins when active

 - “myokines”
 - interleukins from active muscle tissue
 - IL-6
 - IL-1ra
 - sTNF-R

Endocrinology of Muscle

- **Acute exercise without injury**
 - myokines secreted: **IL-6**
 - secreted from Type I & II fibers
 - amount secreted proportional to:
 - duration & intensity of exercise
 - IL-6 may increase 100-fold with intense exercise

Endocrinology of Muscle

- **Acute exercise without injury**
 - myokines secreted: **IL-1ra** and sTNF-R
 - inhibit signal transduction
 - **IL-1ra blocks** the IL-1 receptor
 - sTNF-R **competes** with TNF-α receptor
 - block inflammatory impact of IL-1β & TNF-α

Endocrinology of Muscle

- **Acute exercise without injury**
 - no pro-inflammatory cytokines released
 - IL-1 and TNF-α are not secreted
 - systemic levels of IL-1 & TNF-α are not changed
 - IL-1ra and sTNF-R secreted from active muscle
 - inhibit signal transduction
 - action of IL-1 and TNF-α is **blocked/impaired**
Changes in Interleukins with **Sepsis**

- TNF-α
- IL-1
- IL-6
- sTNF-R
- IL-1ra

pro-inflammatory

anti-inflammatory

Changes in Interleukins with **Exercise**

- IL-6
- sTNF-R
- IL-1ra

anti-inflammatory

Endocrinology of Muscle

- **Acute exercise and endotoxin**
 - Endotoxin (*Escherichia coli*)
 - Physically inactive subjects injected with endotoxin
 - 2-3 fold increase in TNF-α after endotoxin
 - Physically active subjects injected with endotoxin
 - After riding stationary exercise cycle 2.5 hours
 - No increase in TNF-α following endotoxin
 - Exercise suppressed rise in TNF-α

Endocrinology of Muscle

- **Acute exercise without injury**
 - Additional myokines secreted:
 - **Interleukin-8 (IL-8)**
 - Neutrophil chemotaxis during acute inflammation
 - Stimulates local angiogenesis following exercise
 - Substantial local increase in concentration of IL-8
 - Acts in paracrine manner to stimulate local angiogenesis
 - **Interleukin-15 (IL-15)**
 - Local concentration increases with strength training
 - Local anabolic impact on muscle
 - Increase in synthesis of muscle proteins
 - Decrease in degradation of muscle proteins
 - Reduction in adipose tissue mass
Interleukin - 6

- absence of acute inflammation
 - nonobese individuals
 - ~30% from adipose tissue
 - obese individuals
 - majority from adipose tissue
 - level proportional to degree of obesity

- IL-6 measured at baseline & after 12 & 24 weeks of training
 - moderate intensity aerobic exercise program
- IL-6 decreased after 12 & 24 weeks of training
 - decrease in IL-6 inversely related to starting point
 - those with the highest IL-6 at start had largest decrease
- IL-6 returned to baseline after 2 weeks of detraining

Interleukin - 6

- absence of acute inflammation
 - IL-6 known to cause:
 - production of acute phase response proteins (CRP)
 - liver
 - adipose tissue
 - increased level of CRP
 - increased risk of behavioral/lifestyle disorders

- IL-6 is strongly associated with physical inactivity
- IL-6 decreases with chronic training
- IL-6 increases with physical inactivity

Interleukin - 6

- absence of acute inflammation
 - IL-6 high resting level
 - equivalent to traditional risk factors for heart disease
 - hypertension
 - hypercholesterolemia
 - physical inactivity
 - smoking

- IL-6 decreased after 12 & 24 weeks of training
 - decrease in IL-6 inversely related to starting point
 - those with the highest IL-6 at start had largest decrease
- IL-6 returned to baseline after 2 weeks of detraining

Interleukin - 6

- absence of acute inflammation
 - IL-6 high resting level
 - equivalent to traditional risk factors for heart disease
 - IL-6 is strongly associated with physical inactivity
 - IL-6 decreases with chronic training
 - IL-6 increases with physical inactivity

Interleukin - 6

- absence of acute inflammation
 - IL-6 resting level
 - decreases with chronic endurance training
 - increase in IL-6 receptor number
 - decrease in IL-6 resting level
 - increase in IL-6 sensitivity
 - decrease in risk of behavioral/lifestyle disorders

Interleukin - 6

- absence of acute inflammation
- IL-6 resting level
 - independent risk factor for future cardiovascular disorders
 - MI
 - CVA
 - dementia
 - erectile dysfunction

C-Reactive Protein (CRP)

- CRP levels at rest
 - inversely related to level of aerobic fitness
 - children and adults (obese & nonobese)
 - powerful predictor of future cardiovascular disorders
 - myocardial infarction
 - cerebrovascular accident
 - hypertension
 - diabetes

C-Reactive Protein (CRP)

- CRP levels at rest
 - marginally correlated with LDL cholesterol
 - LDL and CRP both highly correlated with future problems
 - identify different pathological processes or groups at risk
 - ~1/2 of MIs occur in people with normal LDL cholesterol

C-Reactive Protein (CRP)

- CRP levels at rest
 - statin therapy
 - Lipitor, simvastatin
 - lowers LDL cholesterol level
 - reduces CRP level
 - reduction in chronic inflammation
 - reduces risk more than reduction in LDL cholesterol
 - reduction in chronic inflammation

C-Reactive Protein (CRP)

- CRP levels at rest
 - statin therapy
 - aspirin therapy
 - given to reduce platelet adhesion
 - reduces risk of thromboembolism (MI, CVA)
 - reduces CRP level
 - reduces chronic inflammation & risk of behavioral/lifestyle disorders
 - acts synergistically with statins to reduce level of chronic inflammation
 - physical activity
 - reduces CRP level
 - independent of weight loss
 - independent of statin &/or aspirin therapy
 - aerobic and resistive exercises both work
Chronic Inflammation

- Chronic inflammation is associated with
 - physical inactivity
 - obesity
 - elevation in pro-inflammatory mediators/markers
 - TNF-α
 - IL-6
 - CRP

Chronic Inflammation

- Chronic inflammation is decreased with
 - physical activity
 - decrease in obesity
 - anti-inflammatory medications
 - each reduces level of pro-inflammatory mediators
 - TNF-α
 - IL-6
 - CRP

Chronic Inflammation

- Chronic inflammation is associated with
 - behavioral/lifestyle diseases
 - vascular diseases
 - atherosclerosis
 - MI
 - CVA
 - dementia
 - erectile dysfunction

Chronic Inflammation

- Chronic inflammation is associated with
 - behavioral/lifestyle diseases
 - vascular diseases
 - insulin-related disorders
 - insulin resistance
 - type II DM
 - metabolic syndrome

Chronic Inflammation

- Chronic inflammation is associated with
 - behavioral/lifestyle diseases
 - vascular diseases
 - insulin-related disorders
 - cancers
 - breast
 - colorectal

Chronic Inflammation

- Chronic inflammation is associated with
 - behavioral/lifestyle diseases
 - vascular disorders
 - insulin-related disorders
 - cancers
 - neurodegenerative disorders:
 - Alzheimer Disease
 - Multiple Sclerosis
Chronic Inflammation

- **Reduction in risk of behavioral/lifestyle disorders**
- changes in behavior/lifestyle
- use of anti-inflammatory medications
- *most anti-inflammatory medications have increased risk of*
 - GI distress
 - ulcers
 - adverse drug reaction
 - interaction with other medications

Inflammation & Atherosclerosis

- **Previously held view of **atherosclerosis**
 - cholesterol storage disease
 - passive deposition of lipids into arterial walls
 - continuing deposition of lipids encrusts arterial walls
 - progressing stenosis provokes occlusive thrombic event

Inflammation & Atherosclerosis

- **Current view of **atherosclerosis**
 - active process
 - arterial walls are dynamic structures
 - altered cellular behavior
 - changes mediated by molecular signals
 - cytokines

Inflammation & Atherosclerosis

- **Why doesn’t it get better over time instead of worse??**
- **Primordial role for inflammation**
 - inflammation links risk factors with lesion formation
 - inflammation *transduces* risk factors to changes in biology and cell function

Inflammation & Atherosclerosis

- **Current view of **atherosclerosis**
 - ~50% of CV deaths occur in people without hyperlipidemia
 - plaque rupture is poorly correlated with degree of stenosis
 - ~50% of infarctions occur in arteries with <50% occlusion
Inflammation & Atherosclerosis

- Current view of atherosclerosis
 - C-Reactive Protein (CRP)
 - produced during acute inflammation
 - level increases 1000-fold with acute infection
 - level remarkably stable over time without infection
 - measure of systemic inflammation
 - strong predictor of future MI & CVA

- CRP predicts risk beyond traditional risk factors
 - CRP <1 mg/l = low risk
 - CRP 1-3 mg/l = moderate risk
 - CRP >3 mg/l = high risk
 - highest vs. lowest tertile of CRP
 - 2-fold increased risk CV event with elevated CRP
 - risk elevated regardless of cholesterol level
 - TC, LDL-C & HDL-C

Inflammation & Atherosclerosis

- Physician Health Study (1997)
 - apparently health males followed for 8 years
 - CRP higher among those that suffered MI or CVA
 - CRP highest quartile vs. lowest quartile
 - 3-fold increased risk of MI
 - 2-fold increased risk of CVA
 - independent of lipid & nonlipid risk factors

- Women’s Health Study
 - Ridker PM; Lancet 2001; 358:946-947.
 - 28,263 postmenopausal women
 - monitored prospectively
 - CRP & LDL-C significant predictors of CV risk
 - CRP higher prognostic value
 - high CRP & high LDL-C 8-fold increase risk
 - CRP & LDL-C minimally correlated
 - appear to identify separate pathological groups at risk

Inflammation & Atherosclerosis

- Women’s Health Initiative
 - Pradhan AD; JAMA 2002;288:980-987.
 - prospective, case controlled study
 - 75,000 females in US initially enrolled
 - 304 developed heart disease
 - 304 case-matched controls (age, smoking, ethnicity)
 - CRP significantly elevated in those with heart disease
 - 2-fold increased risk of heart disease

Inflammation & Atherosclerosis

- Coronary angioplasty outcomes
 - CRP measured before PTCA procedure
 - assessed early & late outcomes
 - restenosis
 - complications
Inflammation & Atherosclerosis

- **Coronary Angioplasty outcomes**
 - Buffon A; J Am Coll Cardiol 1999; 34:1512-1521.
 - CRP measured before PTCA procedure
 - acute problems occurred
 - 22% of patients with high CRP
 - none in patients with normal CRP
 - one year follow-up
 - 63% with high CRP had restenosis
 - 27% with normal CRP had restenosis

- **CRP measured before PTCA procedure**
 - 22% of patients with high CRP
 - none in patients with normal CRP
 - one year follow-up
 - 63% with high CRP had restenosis
 - 27% with normal CRP had restenosis

- **Statin therapy**
 - high CRP & low LDL-C higher risk of CV event than
 - low CRP & high LDL-C
 - people with low or normal LDL-C and high CRP may benefit significantly from statin therapy

- **Statin therapy**
 - decreases recurrent events after stent placement in
 - patient with high CRP independent of LDL-C
 - survivors of MI over 5 year follow-up
 - CRP increased with standard treatment & placebo
 - statin therapy decreased CRP regardless of LDL-C
 - statin therapy associated with better clinical outcomes
 - in patient with initially higher CRP
 - Walter DH; J Am Coll Cardiol; 2001; 37:839-846

- **Aspirin therapy**
 - reduces risk of first CV event by 44%
 - several contradictory studies relating aspirin with CRP
 - few controlled for initial CRP level
 - low dosage of aspirin used
 - low dosage has anti-platelet activity
 - low dosage is not anti-inflammatory
Inflammation & Atherosclerosis

- Aspirin therapy
 - reduces risk of first CV event by 44%
 - several contradictory studies relating aspirin with CRP
 - few controlled for initial CRP level
 - low dosage of aspirin used
 - impact greatest in person with high CRP
 - largest impact on quartile with highest CRP level
 - impact declines in direct proportion to CRP level

- Summary of findings
 - Increased risk of cardiovascular event associated with:
 - elevated LDL-cholesterol
 - elevated CRP
 - Decreased risk of cardiovascular event associated with:
 - reduction in LDL-cholesterol
 - statins
 - reduction in CRP
 - statins
 - aspirin

Neurodegenerative Disorders

- Glial cells have inflammatory properties
 - glial cells can secrete:
 - TNF-α
 - IL-1β
 - TNF-α and IL-1β elevated with
 - Parkinson Disease
 - Multiple Sclerosis
 - Alzheimer Disease
 - Huntington Disease
 - ALS

- Glial-mediated inflammation
 - beneficial acutely
 - acute insults trigger compensatory neurogenesis
 - chronic inflammation inhibits neurogenesis
 - NSAIDs attenuate inflammation
 - restore neurogenesis
 - Monje ML; Science 2003; 302:1760-1765.

- Parkinson Disease
 - majority of cases are idiopathic
 - degenerative disorder of basal ganglia
 - abnormal movement pattern
 - loss of dopamine neurons in substantia nigra
 - evidence of chronic inflammation
 - microglia activity high in areas of degeneration
 - elevated TNF-α
 - elevated IL-1β
Neurodegenerative Disorders

- **Parkinson Disease**
 - majority of cases are idiopathic
 - degenerative disorder of basal ganglia
 - abnormal movement pattern
 - loss of dopamine neurons in substantia nigra
 - evidence of chronic inflammation
 - chronic NSAID use decreases risk ~45%
 - Cox-2 inhibitors reduce neuronal damage
 - demonstrated in animal models only

Neurodegenerative Disorders

- **Multiple Sclerosis**
 - demyelinating CNS disorder
 - T-cell mediated autoimmune disorder
 - chronic glial cell activation
 - elevated level of proinflammatory cytokines
 - TNF-α and IL-1β
 - spontaneous remyelination occurs
 - process is not robust
 - process is inhibited by inflammation

Neurodegenerative Disorders

- **Multiple Sclerosis**
 - detailed autopsy study
 - 67 with MS and 28 without MS
 - Frischer JM; Brain 2009; 132:1175-1189.
 - pronounced inflammation found in
 - acute and relapsing forms
 - progressive forms
 - all lesions
 - all stages of disorder
 - correlation between axonal injury & disability

Neurodegenerative Disorders

- **Multiple Sclerosis**
 - demyelinating CNS disorder
 - proinflammatory cytokines
 - TNF-α and IL-1β elevated locally
 - levels correlate with stage of disorder
Neurodegenerative Disorders

- **Multiple Sclerosis**
 - demyelinating CNS disorder
 - proinflammatory cytokines
 - TNF-α and IL-1β
 - NSAIDs impact
 - ameliorate & delay progression
 - effectiveness related to “COX-2” inhibition
 - Statins impact
 - no evidence of effectiveness

Cannabinoids impact

- anti-inflammatory properties
 - cannabidiol > THC
 - Pletcher MJ. JAMA 2012; 307:173-181
 - ameliorate progression & symptoms (rat model)

Neurodegenerative Disorders

- **Alzheimer Disease**
 - severe cognitive dysfunction
 - neurofibrillary tangles
 - amyloid plaques contain
 - activated microglia
 - inflammatory mediators
 - TNF-α and IL-1β are elevated

Neurodegenerative Disorders

- original association with inflammation
 - patients with Rheumatoid Arthritis
 - patients with heart disease
 - take high dose NSAIDs chronically
 - reduced incidence of Alzheimer Disease

Neurodegenerative Disorders

- original association with inflammation
 - clinical trials using NSAIDs
 - no benefit in some studies
 - design flaws?
 - late initiation
 - dosage used
 - no change in inflammatory markers
 - clinical trials using statins
 - may be protective
 - cross-sectional study of 3 hospital data-bases
 - incidence of AD 60% lower in patients taking statins
Neurodegenerative Disorders

- Alzheimer Disease
 - original association with inflammation
 - clinical trials using statins
 - Rotterdam study with 6992 participants
 - prospective clinical trial
 - 9 year follow-up

- Alzheimer Disease
 - original association with inflammation
 - clinical trials using statins
 - Rotterdam study with 6992 participants
 - prospective clinical trial
 - 9 year follow-up
 - statin use associated with 60% decreased incidence
 - non-statin cholesterol lowering medication
 - no effect on incidence of AD

Neurodegenerative Disorders

- Alzheimer Disease
 - original association with inflammation
 - physical activity as an intervention
 1) longitudinal study of 5925 older females
 - walking more associated with ~35% decreased risk
 2) longitudinal study of 349 adults ≥55 years of age
 - higher levels of cardiorespiratory fitness associated with
 less cognitive decline over 6 years

- Alzheimer Disease
 - original association with inflammation
 - physical activity as an intervention
 3) longitudinal study of 4615 adults
 - physical activity associated with:
 42% decrease in level of cognitive decline
 50% decrease in incidence of AD
 37% decrease in incidence of any form of dementia

Chronic Inflammation and Cancer Risk

Brad Stockert, PT, PhD
Professor of Physical Therapy
California State University, Sacramento

Cancer

- uncontrolled growth of cells
- multiple forms
- multiple causes
- multiple locations
Top 3 New Cancer Sites by Gender

- **males:**
 - prostate (25%)
 - lung/bronchus (15%)
 - colorectal (10%)

- **females:**
 - breast (27%)
 - lung/bronchus (14%)
 - colorectal (10%)

Cancer and Inflammation

- **Theodor Boveri** (1862-1915)
 - first postulated link between cancer & inflammation
 - tumorigenesis promoted by chronic inflammation
 - Several subsequent investigators & studies have shown
 - elevated CRP associated with increased cancer risk
 - association shown with many forms of cancer
 - lung, breast, rectum & prostate cancers
 - association not found with infectious cancers

Cancer and Inflammation

- **Rotterdam study**
 - Siemes C. J Clinical Oncology 2006;24:5216-5222.
 - 7,017 participants ≥55 years of age
 - mean follow-up time = 10.2 years
 - high levels of CRP [>3mg/L]
 - compared risk vs. subject with low CRP [<1mg/L]
 - associated with increased risk of incident cancer
 - lung cancer association strongest

- **Greek study**
 - prospective study with 28,572 volunteers at start
 - 496 cancer cases
 - 996 case-matched control cases
 - matched for age, smoking, BMI and other attributes
 - CRP levels were higher in cases with cancer
 - 4.1 mg/L for cancer cases
 - 2.6 mg/L for control cases
 - association strongest for lung cancer

Cancer and Inflammation

- **Greek study**
 - prospective study with 28,572 volunteers at start
 - 496 cancer cases
 - 996 case-matched control cases
 - matched for age, smoking, BMI and other attributes

Impact of physical activity on overall cancer risk

- review of cohort & case-control studies
- occupational & recreational physical activities
- both provide protection against overall cancer risk
- graded dose-response manner
- regardless of gender
- confounding variables had little impact
Breast Cancer and Inflammation

- **Breast cancer**
 - excess body weight causes 20% cancer death in women ≥50 years of age in the U.S.
 - obesity is a risk factor for breast cancer
 - obese females have increased incidence of:
 - metastatic cancer at time of diagnosis
 - poorer outcome

- **Obesity**
 - weight loss is associated with decreased risk in post menopausal females
 - weight gain is associated with increased risk in pre-menopausal females

 Pichard D; Maturitas; 2008; 60: 19-30.

- **Females post menopause**
 - high estrogen levels promote breast cancer
 - adipose tissue is primary source of estrogen
 - adipose tissue is primary source of TNF-α
 - TNF-α stimulates estrogen synthesis
 - TNF-α stimulates angiogenesis
 - TNF-α is proinflammatory
 - obese females have elevated estrogen
 - obese females have higher risk of breast cancer

- **Anti-inflammatory medications**
 - aspirin inhibits cyclooxygenase activity
 - aspirin lowers prostaglandin levels
 - lowering prostaglandins reduces aromatase activity
 - lower level of estrogen observed
 - theoretically lower estrogen should translate to a lower rate of breast cancer

 - 1,581 incident breast cancers reported
 - aspirin users:
 - lower incidence of breast cancers vs. non users
 - relative risk 0.8
 - dose response relationship observed
 - aspirin use ≥5 times/week had relative risk 0.7
 - results did not vary by tumor receptor status
 - independent of hormone-receptor signaling pathway
Breast Cancer and Inflammation

- Breast cancer and anti-inflammatory medications
 - 1,581 incident breast cancers reported
- non-aspirin NSAID users:
 - no association with reduction in cancer incidence
 - no association regardless of tumor receptor status

Breast Cancer and Inflammation

- Breast cancer and anti-inflammatory medications
 - statins have anti-inflammatory properties
 - statins have other anti-cancer properties
 - response to statins varies
 - response varies by tumor type
 - breast, colorectal and prostate cancers reduced
 - response varies by type of statin used
 - lipophilic responses > hydrophilic responses

Breast Cancer and Inflammation

- Breast cancer and anti-inflammatory medications
 - statins have anti-inflammatory properties
 - statins have other anti-cancer properties
 - response to statins varies
 - statins reduce the incidence of breast cancer
 - 72% reduction in incidence
 - found with all statins

Breast Cancer and Inflammation

- Breast cancer and anti-inflammatory medications
 - statins have anti-inflammatory properties
 - statins have other anti-cancer properties
 - response to statins varies
 - statins reduce the incidence of breast cancer
 - 56% reduction in incidence
 - found with all statins

Breast Cancer and Inflammation

- Breast cancer and physical activity
 - review of 41 studies with 108,031 breast cancer cases
 - occupational & recreational physical activities
 - both provide protection against breast cancer risk
 - graded dose-response manner
 - impact higher if activity was >4.5 MET
 - impact higher with more MET-hours/week
Colon Cancer and Inflammation

- Colorectal cancer and inflammation
 - noninfectious chronic inflammation associated with:
 - increased incidence colorectal and lung cancer
 - idiopathic inflammatory bowel disease
 - colorectal cancer incidence increases over time
 - ~25% colorectal cancer cases are familial
 - most cases develop from adenomatous polyps
 - 90% of colorectal cases in patients >50 years of age

- aspirin for prevention of colorectal cancer
 -review of RCTs, case control studies and cohort studies
 - relative risk (RR) of colorectal cancer in aspirin users
 - RCT – RR = 0.82
 - case control studies – RR = 0.87
 - cohort studies – RR = 0.72

- inflammatory markers strongly associated with cancer death
 - hazard ratio for cancer death with inflammatory markers
 - 1.64 for elevated CRP
 - 1.82 for elevated TNF-α
 - elevated CRP & TNF-α strongly associated with increased incidence of lung cancer deaths
 - elevated CRP strongly associated with increased incidence of colorectal and breast cancer deaths

- CRP 25% higher in subjects with colorectal cancer
 - odds ratio was 2.9 in highest vs lowest CRP quartile
 - "dose-response" relationship observed
 - risk of colorectal cancer increased with higher CRP

- inflammatory markers strongly associated with cancer death
 - hazard ratio for cancer death with inflammatory markers
 - 1.64 for elevated CRP
 - 1.82 for elevated TNF-α
 - elevated CRP & TNF-α strongly associated with increased incidence of lung cancer deaths
 - elevated CRP strongly associated with increased incidence of colorectal and breast cancer deaths
Colon Cancer and Inflammation

• Colorectal cancer and inflammation
 • aspirin for prevention of colorectal cancer
 • prospective study of 47,363 males
 • 18 year follow-up
 • 975 cases of colorectal cancer

18 year follow-up

975 cases of colorectal cancer

Colon Cancer and Inflammation

• Colorectal cancer and inflammation
 • aspirin for prevention of colorectal cancer
 • prospective study of 47,363 males
 • determined dose-response relationship
 • 0.5 – 1.5 tablets/week – RR = 0.94
 • 2.0 – 5.0 tablets/week – RR = 0.80
 • 6.0 – 14.0 tablets/week – RR = 0.72
 • >14.0 tablets/week – RR = 0.30
 • required 6-10 years of use to show effectiveness

Prospective study of 47,363 males

Colon Cancer and Inflammation

• Colorectal cancer and inflammation
 • aspirin for prevention of colorectal cancer
 • review of 5 RCTs (14,033 subjects)
 • Rothwell PM. Lancet 2010. (published online, October, 2010)
 • primary and secondary prevention trials
 • 30-1200 mg/day
 • 20 year follow-up

Review of 5 RCTs (14,033 subjects)

Rothwell PM. Lancet 2010. (published online, October, 2010)

Colon Cancer and Inflammation

• Colorectal cancer and inflammation
 • aspirin for prevention of colorectal cancer
 • review of 5 RCTs (14,033 subjects)
 • ≥75 mg/day resulted in decreased:
 - cancer incidence
 - cancer mortality
 • benefit increased with duration of use
 - required 5+ years of use

Review of 5 RCTs (14,033 subjects)

Rothwell PM. Lancet 2010. (published online, October, 2010)

Colon Cancer and Inflammation

• Colorectal cancer and inflammation
 • aspirin for prevention of colorectal cancer
 • 2 large cohort studies analyzed
 • 82,911 females and 47,363 males
 • 22 years of follow-up
 • 636 cases of colorectal cancer

2 large cohort studies analyzed

Colon Cancer and Inflammation

• Colorectal cancer and inflammation
 • aspirin for prevention of colorectal cancer
 • 2 large cohort studies analyzed
 • 636 cases of colorectal cancer
 • 423 (67%) had moderate to strong expression of COX-2
 • 213 (33%) did not express COX-2
 • COX-2 promotes inflammation & proliferation
 over-expressed in many forms of cancers

2 large cohort studies analyzed

Colon Cancer and Inflammation

- **Colorectal cancer and inflammation**
 - aspirin for prevention of colorectal cancer
 - 2 large cohort studies analyzed
 - 636 cases of colorectal cancer
 - 423 (67%) had moderate to strong expression of COX-2
 - 213 (33%) did not express COX-2
 - 2 regular aspirin tablets/day vs COX-2 expression
 - RR = 0.64 for tumors expressing COX-2
 - RR = 0.96 for tumors not expressing COX-2

- **Statins for prevention of colorectal cancer**
 - 47% decrease in incidence of colorectal cancer
 - used statins ≥5 years
 - all statins effective

- **Impact of physical activity on colon cancer risk**
 - review of 48 studies 40,764 colon cancer cases
 - occupational & recreational physical activities
 - both provide protection against colon cancer risk
 - graded dose-response manner
 - impact higher if activity was >4.5 MET
 - impact higher with more MET-hours/week

Colon Cancer and Inflammation

- **Impact of physical activity on colon cancer risk**
 - grade of 48 studies 40,764 colon cancer cases
 - review of 48 studies 40,764 colon cancer cases
 - occupational & recreational physical activities
 - both provide protection against colon cancer risk
 - graded dose-response manner
 - impact higher if activity was >4.5 MET
 - impact higher with more MET-hours/week

Bibliography

Bibliography

- Marchetti B and Abbracchio MP. To be or not to be (inflamed) - is that the question in anti-inflammatory drug therapy of neurodegenerative disorders. Trends in Pharmacol Sci. 2005;26:517-525.
Bibliography
slides 56-74

Bibliography
slides 56-74

Bibliography
slides 56-74

Bibliography
slides 56-74
Bibliography slides 95-129

Bibliography slides 95-129

Bibliography slides 95-129

Bibliography slides 95-129