Comparability of Cord Blood Units

John D. McMannis, Ph.D.

Professor of Cancer Medicine Director, Cell Therapy Laboratory Technical Director, UT MDAnderson Cord Blood Bank

> Liaison Meeting, Bethesda June 2007

Survey

Draft Guidance document allows the CBB to present comparability data for units previously collected by different methods
 Snapshot of practices that have been used by CBB for some of their inventory

- Asked questions about numbers of different procedures
- Asked questions about "GMP" compliance

21

9

Number of centers:Number of responses:

Note: Last minute request

	# Different Procedures Used
Collection	1(2), 2(5), 4(2)
	- in utero vs ex utero
	 different collection bags
	- donor screening
Processing	
Cryopreservation	
Quality Control	

	# Different Procedures Used
Collection	
Processing	1 (5), 2 (4)
	- Manual vs automated
	- RBC depletion
Cryopreservation	
Quality Control	

	# Different Procedures Used
Collection	
Processing	
Cryopreservation	1 (7), 2 (2)
	- CRF vs Mechanical B/U
Quality Control	

	# Different Procedures Used
Collection	
Processing	
Cryopreservation	
Quality Control	1 (4), 2 (1), ? (4)
	- TNC/CFU only
	- NAT Testing
	- Anaerobic bottles
	- Missing data (CFU, CD34)

Complete documentation	1) Always8
of procedure	2) Never
	3) Past years1
Cleaning documentation	1) Always
(instruments and work	2) Never
area) between products	3) Past years
Cleaning documentation	1) Always
(instruments and work	2) Never
monthly	3) Past years

Complete documentation	1) Always7
of procedure	2) Never
	3) Past years1
Cleaning documentation	1) Always4
(instruments and work	2) Never3
area) between products	3) Past years2
Cleaning documentation	1) Always
(instruments and work	2) Never
area) daily, weekly, monthly	3) Past years

Complete documentation	1)	Always8
of procedure	2)	Never
	3)	Past years1
Cleaning documentation	1)	Always4
(instruments and work	2)	Never3
area) between products	3)	Past years2
Cleaning documentation	1)	Always7
(instruments and work	2)	Never
area) daily, weekly, monthly	3)	Past years1

Materials management (Quarantine, Release specifications, etc)	 Always6 Never Pastyears3
Environmental Monitoring of NON VIABLE particles in the Cell Processing Lab	 Always Never Pastyears
Environmental Monitoring of VIABLE particles in the Cell Processing Lab	 Always Never Pastyears

Materials management (Quarantine, Release specifications, etc)	 Always6 Never Pastyears3
Environmental Monitoring of NON VIABLE particles in the Cell Processing Lab	 Always Never7 Pastyears2 - occasionally
Environmental Monitoring of VIABLE particles in the Cell Processing Lab	 Always Never Pastyears

Materials management (Quarantine, Release	 Always6 Never
specifications, etc)	3) Past years3
Environmental	1) Always
Monitoring of NON VIABLE particles in the	2) Never7
	3) Past years2
	- occasionally
Environmental	1) Always
Monitoring of VIABLE	2) Never7
Processing Lab	3) Past years2
	- occasionally

Training documentation of all personnel involved with CBB	 Always9 Never Pastyears
Quality review of all deviations	 Always Never Pastyears
Two person sign-off of critical steps of procedure (i.e. addition of starch)	 Always Never Pastyears

Training documentation of all personnel involved with CBB	 Always9 Never Pastyears
Quality review of all deviations	 Always
Two person sign-off of critical steps of procedure (i.e. addition of starch)	 Always Never Pastyears

Training documentation of all personnel involved with CBB	1) 2) 3)	Always9 Never Past years
Quality review of all deviations	1) 2) 3)	Always7 Never Past years2
Two person sign-off of critical steps of procedure (i.e. addition of starch)	1) 2) 3)	Always5 Never4 Pastyears

Cord Blood Technology (And HPC-A)

Different than other therapeutic products

- Half life is 50 years (?)
- Not end stage differentiation
- Take 20 40 days to detect in the periphery
- Non-engraftment
 - Maybe due to poor Stem Cell Product
 - Double cord transplantation
 - Conditioning regimen
 - Clinical course during engraftment
 - Previous chemotherapy

Comparability

Based on Clinical utility

- Difficult if not impossible
 - Similar to drug study requirements
 - Large numbers of infusions dilute out the clinical factors
- What is the endpoint
 - Engraftment
 - 30d, 6mo, 1, 2 5 year engraftment
- Inhibit new technology
 - 1-3% of inventory is used on a yearly basis
- Inhibit others from entering the field

Comparability

Based on in vitro data

- Goal is to have the maximum number of CB units available for clinical use balanced with protecting the safety of the patients receiving the product
- -Less data is better (within reason)
- What are the minimum requirements to accomplish this goal

Choosing a Cord Blood Unit

HLA: 6, then 5, then 4
TNC
Bank
CD34 Numbers

All other factors are reviewed but usually at time of CB arrival

Comparability Suggested Parameters

TNCHLASterility

CFU (growth) OR
Viable CD34 (presence)

Collection	1(2), 2(5), 4(2)	
	- in utero vs ex utero	
	 different collection bags 	
	- donor screening	

In utero vs ex utero

Published studies showing no difference in vitro or in vivo

Collection bags

- Qualification/validation runs of the different bags
 - Viability and sterility of cells

Donor screening

 License products as is with requirement of a callback at time of CT. If unreachable, then label appropriately

Processing	1 (5), 2 (4)	
	- Manual vs automated	
	- RBC depletion	

Manual vs automated

 In vitro split runs comparing products
 Sterility, viability, CFU
 Minimum number - ???

 RBC depletion vs no depletion

 Same comparison

Cryopreservation	1 (7), 2 (2) - CRF vs Mechanical B/U

Validate your method

 Viability and yield
 Sterility....yes but how?

 Two methods

 Split runs and compare viability and yield

Quality Control	1 (4), 2 (1), ? (4)
	- TNC/CFU only
	- NAT Testing
	- Anaerobic bottles
	- Missing data (CFU, CD34)

Minimum QC of TNC, HLA, Sterility and either CFU or CD34

NAT testing/Anaerobic micro

 Products licensed with requirement that NAT (or Sterility) be done at time of CT

NAT and Cord Blood

Missing data

 Product licensed with requirement that test be performed on segment (vial) at time of CT

Comparability GMP Manufacturing Conditions

Require analysis for all of the "GMP" requirements that have not been performed

- Quality review of the effect of this deficiency on the potential safety of the product as part of Licensure submission
- Example: No documentation of cleaning between products
 - Overall contamination rate before and after implementing this documentation
 - Review all positives and look upstream and downstream in manufacturing process to see if any other contamination
 - Viral screening on products processed in the same time period

Comparability Additional Information (if available)

EngraftmentChimerism for single CB infusions

Questions for discussion

Back-up proceduresNew technologiesDonor History