The Role of Natural Killer Cells in Cancer and Transplantation

Jeffrey S. Miller, M.D.

University of Minnesota Cancer Center
Associate Director of Experimental Therapeutics
Division of Heme/Onc/Transplant
Minneapolis, MN
How can we best exploit NK cells?

Adoptive Transfer ? Transplant

Pros and cons

Safer
Transient
Can expand in vivo (IL-2)

More TRM
Permanent
Too risky 2°
GVHD risk
AML Transplant Trials Based on Promoting NK Cell Alloreactivity

<table>
<thead>
<tr>
<th>Transplant</th>
<th>Graft</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davies et al, Blood 11/2002</td>
<td>URD KIR-L Mismatch</td>
<td>UBM</td>
</tr>
<tr>
<td>Giebel et al, Blood 8/2003</td>
<td>URD KIR-L Mismatch</td>
<td>In Vivo TCD</td>
</tr>
</tbody>
</table>
Killer-Immunoglobulin Receptor (KIR) Gene Locus

Group-A Haplotype: Absence of 2DS2, 2DL5, 2DS1, 2DS3, 2DS5, 3DS1

Group-B Haplotypes: Presence of at least one of above
How can we best exploit NK cells?

Adoptive Transfer ? Transplant

Pros and cons
Outpatient Subcutaneous IL-2 Promotes In Vivo NK Cell Expansion

…but NK cells are not maximally activated

Miller et al, Biol Blood Marrow Transplant 3:34, 1997
Autologous NK Administration in Cancer Patients

Recovery from autologous HCT

IL-2

NK cells more activated using this approach
 NK Cell-based Autologous Immunotherapy to Prevent Relapse (HD, NHL, BC)

Burns et al, Bone Marrow Transplant, 32:177-186, 2003

Conclusions

Enhanced activation of NK cells

A matched paired analysis with our data and data from the IBMTR showed no apparent efficacy (survival or time to disease progression)
Hypothesis:
Autologous NK Cell Therapy Failed Due to Inhibitory Receptors that Recognize MHC

- **KIR - MHC class I match** -> No Killing
- **KIR - MHC class I mismatch** -> Lysis occurs
Related Donor Haploidentical NK Infusions After High Dose Chemotherapy

PB

TCD IL-2

NK

HD Rx

Cy 60 mg/kg x 2
Flu 25 mg/m² x 5
2-8 x 10⁷ MNC/kg

IL-2

10 MU QOD x 6
Patients and Eligibility

- Poor prognosis AML
 - Primary refractory disease
 - Relapsed disease not in CR after 1 or more cycles of standard re-induction therapy
 - Secondary AML from MDS
 - Relapsed AML ≥ 3 months after HCT.
- No active infections
KIR Ligand Mismatched Donor Correlates with Achieving AML CR (5 of 19=26%)
Higher Numbers of Functional NK Cells in Patients with CR After Adoptive Transfer

Miller et al, Blood 105:3051, 2005
Hi-Cy/Flu Induces In Vivo Expansion of Donor Cells

% Donor

Day after NK cell infusion

AML Hi-Cy/Flu
Renal - Flu

0 1 2 7 14 28
Hi-Cy/Flu Induces Endogenous IL-15 which Correlates with In Vivo NK Cell expansion
Hypothesis

The best strategy may be to combine adoptive transfer and in vivo expansion followed by HCT

Adoptive Transfer + Transplant

The best of both worlds?
Umbilical Cord Blood

- 100-150 ml cord blood
- Usually discarded
- High concentration of hematopoietic and NK cell progenitors
- Stem cell source for related donor transplant
Cord Blood is Rich in NK Cell Precursors

Triple UCB NK Infusion and Transplant
(intensive conditioning)

Unit #1

IL-2

NK

Units #2, #3

IL-2

Intensive Conditioning
Late Engraftment after Triple UCBT

UCB NK | DCBT | IL2

From DCBT

UCB NK | DCBT | IL2

Day
Early Engraftment after Triple UCBT

From UCB NK
Where do we go from here?

• Improve patient selection
• Improve NK cell activation
 – Interrupt inhibitory receptor mechanisms
• Increase target sensitivity
 – Bortezomib
NK Cell Target Cell

Inhibitory Receptors

- CD94
- NKG2A
- HL-A-E
- SHP-1
- KIR3DL2
- KIR3DL1
- KIR2DL1
- KIR2DL2
- KIR2DL3

Target Cell

- HLA-A3/11
- HLA-Bw4
- HLA-C2
- HLA-C1
- HLA-E
- HLA-A

Verneris and Miller
NKG2A/KIR Expression Distinguishes NK Cell Repertoire

KIR⁻/NKG2A⁻ subset: 19.4 ± 2.8% of CD56⁺dim NK cells healthy donors (n=26)

Cooley et al
Sensitization of Tumor Cells to NK Cell-Mediated Killing by Proteasome Inhibition

William H.D. Hallett,* Erik Ames,* Milad Motarjemi,* Isabel Barao,* Anil Shanker,†
David L. Tamang,* Thomas J. Sayers,† Dorothy Hudig,* and William J. Murphy*‡

JI 180:163-170, 2008
Conclusions

- NK cells are important in cancer therapy and transplantation
- KIR B donor haplotype improves RFS after unrelated T-replete HCT for AML
- We are currently treating refractory AML with NK cells + HCT
 - Myeloablative regimen with UCB NK + UCB HCT
 - RIC with adult NK cells and CD34⁺ cells
- New strategies to improve NK cell killing in vivo may improve efficacy
P01 (PI: Jeffrey S. Miller)

“NK Cells and their receptors in unrelated donor transplantation”

<table>
<thead>
<tr>
<th>University of Minnesota</th>
<th>NMDP/CIBMTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey S. Miller, MD</td>
<td>Stephen Spellman</td>
</tr>
<tr>
<td>Daniel J. Weisdorf, MD</td>
<td>Michael Haagenson</td>
</tr>
<tr>
<td>Sarah Cooley, MD</td>
<td>John Klein, PhD</td>
</tr>
<tr>
<td>Michael Verneris, MD</td>
<td>Dennis Confer, MD</td>
</tr>
<tr>
<td>Chap T. Le, PhD</td>
<td>Martin Meiers</td>
</tr>
<tr>
<td>Tracy Bergemann, PhD</td>
<td>Tao Wang, PhD</td>
</tr>
<tr>
<td>Stanford University</td>
<td></td>
</tr>
<tr>
<td>Peter Parham, PhD</td>
<td></td>
</tr>
<tr>
<td>Children’s Hospital and Research Institute, Oakland</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Trachtenberg, PhD</td>
<td></td>
</tr>
<tr>
<td>Anthony Nolan Research Inst.</td>
<td></td>
</tr>
<tr>
<td>Steven G.E. Marsh, PhD</td>
<td></td>
</tr>
<tr>
<td>Fred Hutchinson CRC</td>
<td></td>
</tr>
<tr>
<td>Daniel Geraghty, PhD</td>
<td></td>
</tr>
</tbody>
</table>

Affiliated Clinical Sites

- **MCW**
 - William Drobyski, MD
 - David Margolis, MD

- **Moffitt**
 - Claudio Anasetti, MD

- **OSU**
 - Steven Devine, MD

- **Emory**
 - Ned Waller, MD

- **Indiana**
 - Sharif Farag, MD

- **Washington U**
 - John Dipersio, MD

- **U of Penn**
 - David Porter, MD

- **City of Hope**
 - Steve Forman, MD
Acknowledgements

- **Miller Lab**
 - Valarie McCullar (Research)
 - Todd Lenvik
 - Robert Godal
 - Frank Cichocki
 - Purvi Gada
 - Gong Yun
 - Karen Peterson
 - Michelle Pitt
 - Becky Haack
 - Sue Fautsch (Translational)
 - Julie Curtsinger
 - Rosanna Warden
 - Liz Narten
 - Michelle Gleason

- **HLA typing lab - Harriet Noreen**
- **CTO/Research Nurses (Dixie Lewis/Roby Nicklow)**
- **U of MN Faculty**
 - Dan Weisdorf
 - Sarah Cooley
 - Phil McGlave
 - Arne Slungaard
 - Linda Burns
 - Claudio Brunstein
 - Veronika Bachenova
 - John Wagner
 - Bruce Blazar
 - Michael Verneris
 - Dave McKenna (GMP Facility)
 - Chap Le/Tracy Bergemann (Biostat)