Natural Killer Cell Therapy of Cancer

Dario Campana MD PhD

Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
NK Cell Therapy of Cancer: Problems

- NK cells are difficult to obtain in large numbers
 - High effector : target ratios are likely to be required to achieve clinical effects
 - Ideal culture systems should not stimulate the expansion of T cells

- Some cancer subtypes are relatively resistant to NK cells
A Method to Specifically Expand NK Cells

- NK cells express 4-1BB
- 4-1BB ligation results in stimulatory signals

“K562-mb15-41BBL”

- IL-15 stimulates NK cells
- It is more powerful in its membrane-bound form

Imai et al. Blood 2005
NK Activation and Expansion System

Growth Potential of Human NK Cells

Pulses of K562-mb15-41BBL every 2-3 wks

senescence

Pulses of

Days of culture

Population doubling

Days of culture

Population doubling
Growth Potential of Human NK Cells

Pulses of K562-mb15-41BBL every 2-3 wks

Control TERT

hTERT

β-actin

SKY-FISH 46, XY (Day 263)
NK Cell Expansion from:

- Peripheral blood from healthy donors
- Peripheral blood from patients with acute lymphoblastic leukemia in remission, multiple myeloma, and gastric cancer
- Cord blood
- Liver lymphocytes
Cytotoxic Capacity of Expanded NK Cells

- Hematologic malignancies
- Solid tumors
NK Cell Therapy of AML – Case Report

14-year old boy with AML secondary to osteosarcoma tx; relapse after MUD HSCT; no remission after salvage chemotherapy (30% blasts in BM)

NK cell therapy (Miller et al. Blood 2005)
- Fludarabine/cyclophosphamide lymphodepletion
- Apheresis from KIR-mismatched haplo donor
- T-cell depletion, IL-2 1000 IU/mL overnight
- 10^7 NK/kg; 3 x 10^6 IU/m² IL-2 3x/week for 2 weeks

BM MRD post-NK: day 14 = 0.3%; day 29 <0.01%; NK cells >50% in PB and BM

35 days post-NK infusion: T-cell depleted HSCT from NK donor (2Gy TBI)

6 mths post-HSCT: MRD-neg with complete donor chimera
Expanded NK Cells Are More Powerful Than Primary and IL-2-stimulated NK Cells

- U937
- HL60
- Primary AML

Expanded NK Cells Are More Powerful Than Primary and IL-2-stimulated NK Cells

Relative Sensitivity of Childhood Solid Tumors to NK Cell Cytotoxicity

EWS: Ewing sarcoma; RMS: Rhabdomyosarcoma; NB: Neuroblastoma; OS: Osteosarcoma

Cho et al. Clin Cancer Res 2010
Production of Clinical Grade Reagents

Large-scale cultures
Median NK cell expansion after 7 days of culture:
91.5 fold (range, 33-141; n = 12)
Eligibility: Relapsed/refractory AML, T-ALL, Ewing sarcoma and rhabdomyosarcoma

Procedure:
- Leukapheresis of haploidentical donor
- 7-day NK expansion with irradiated K562-mb15-41BBL cells
- T-cell depletion

Dose escalation: 1 x 10^6/kg, 1 x 10^7/kg and 5 x 10^7/kg; 3 patients in each group

Conditioning: Cyclophosphamide 60 mg/kg; Fludarabine 25 mg/m^2/day x 5; IL-2: 1 million IU/m^2 3x/wk x 2wks
Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications

NATALIA LAPTEVA¹, APRIL G. DURETTI, JIALI SUN¹, LISA A. ROLLINS¹, LESLIE L. HUYNH¹, JIAN FANG¹, VARADA DANDEKAR¹, ZHUYONG MEI¹, KIMBERLEY JACKSON¹, JUAN VERA¹, JUN ANDO¹, MINHTRAN C. NGO¹, BLAINE COUSTAN-SMITH³, DARIO CAMPANA³, SUSANN SZMANIA³, TARUN GARG⁴, AMBERLY MORENO-BOST⁴, FRITS VANRHEE⁴, ADRIAN P. GEE¹,² & CLIONA M. ROONEY¹,²

¹Center for Cell and Gene Therapy, The Methodist Hospital, Texas Children’s Hospital, Houston, TX and ²Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA, ³National University of Singapore, Singapore. and ⁴University of Arkansas Medical Center, Little Rock, Arkansas, USA

CytOTHERAPY, 2012; 14: 1131–1143

(A) Day 0 Day 2 Day 4 Day 6 Day 8 Day 10
2x10⁶ NK feeding harvest
Bags

Day 0
2x10⁶ NK Day 10
no processing for up to 10 days
harvest

18x10⁹ cells in 40 197-mL bags

18x10⁹ cells in 20 G-Rex100s

(B) (C)
NK cells (x10⁶) per vessel

Fold NK Expansion

Days

6 8 10
6 8 10

G-Rex Bags

*
Autologous NK Cell Infusion in Multiple Myeloma (NCT01313897)

Courtesy Dr. Frits van Rhee
NK Cytotoxicity Against Gastric Cancer Cell Lines
(K. Mimura, K. Kono)

Resting NK

IL-2 NK

Expanded NK

E:T 4:1
N = 6
Acute Lymphoblastic Leukemia
Relative Sensitivity to NK Cell Cytotoxicity

E:T 4:1

E:T 1:1

% cell killing

AML B-lin. ALL T-ALL

0 20 40 60 80 100

% cell killing

0 20 40 60 80 100

AML B-lin. ALL T-ALL
Redirecting the Specificity of NK Cells

Single chain variable domain - scFv
(binds to molecule on the surface of target cells)

Imai et al. Leukemia 2004; Blood 2005
NK Cell Transduction with Anti-CD19 Chimeric Antigen Receptors

- High expression (median transduction efficiency, ~70%)

- Significantly higher IFNγ and GM-CSF production upon contact with CD19+ cells

- Marked increase in specific cytotoxicity against CD19+ cells in vitro and in vivo

Imai et al. Blood 2005
NKCD19 (NCT00995137)

- **Eligibility:** Relapsed/refractory B-lineage ALL

- **Procedure:**
 - Leukapheresis from haploidentical donor
 - 7-day NK expansion with irradiated K562-mb15-41BBL cells
 - T-cell depletion
 - Transduction with anti-CD19-BB-ζ

- **Dose escalation:** 1 x 10^6/kg, 1 x 10^7/kg and 5 x 10^7/kg; 3 patients in each group

- **Conditioning:** Cyclophosphamide 60 mg/kg; Fludarabine 25 mg/m^2/day x 5; IL-2: 1 million units/m^2 3x/wk x 2wks
Recent Technical Developments

- Cell engineering by electroporation
- Enhanced cell killing
Expression of Anti-CD19-BB-ζ mRNA in Immune Cells by Electroporation

- primary NK cells: 45%
- activated T cells: 74%
- expanded NK cells: 69%
- CIK cells: 72%

Shimasaki et al. Cytotherapy, 2012
Transient Expression of Anti-CD19-BB-ζ mRNA after Electroporation

Shimasaki et al. Cytotherapy 2012
NK Cells Electroporated with Anti-CD19-BB-ζ mRNA in a Mouse Model of ALL

<table>
<thead>
<tr>
<th>Day</th>
<th>2</th>
<th>4</th>
<th>9</th>
<th>16</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NK-mock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NK-aCD19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shimasaki et al. Cytotherapy, 2012
NK Cell Receptors and Their Ligands

NKG2D-DAP10 Signaling

Lanier, Nature Immunol 2008
Genetic Modification of NK Cells with NKG2D

Mock

NKG2D

DAP10

CD3ζ

IRES

FLAG

Ampicillin resist.

5'-LTR

3'-LTR

pMSCV-CD3ζ-NKG2D-IRES-DAP10ζ

NKG2D expression (MFI)

P<0.0001

Mock

NKG2D-DAP10-CD3ζ

DAP10

NKG2D

Mock

NKG2D-DAP10-CD3ζ

kD

82

38

30

15

reducing

non-reducing

NKG2D-CD3ζ

CD3ζ

CD3ζ
NKG2D-DAP10-CD3ζ Improves NK Cytotoxicity

Chang et al. Cancer Res. 2013
Specificity of NKG2D-DAP10-CD3ζ Signaling

Suppression of cytotoxicity with an anti-NKG2D inhibitory Ab

CD107a assay after stimulation with anti-NKG2D agonistic Ab

Cytokine production after stimulation with anti-NKG2D agonistic Ab
NKG2D-DAP10-CD3ζ Improves Cytotoxicity Against Osteosarcoma
NKG2D-DAP10-CD3ζ Expression by Electroporation
Donor

Cell expansion

NK

Patient

AML, T-ALL
Ewing, rhabdo
Myeloma

Cell expansion

and genetic modification

B-lineage ALL/B-NHL

Osteo, prostate
Neuroblastoma

Patient

Neuroblastoma
Breast, GI

Patient

Autologous

Cell expansion

plus antibody

AML, T-ALL
Ewing, rhabdo
Myeloma

NK

Patient

B-lineage ALL/B-NHL

Osteo, prostate
Neuroblastoma
Yu-Hsiang Chang
Masaru Imamura
Takahiro Kamiya
Ko Kudo
Paolo Lorenzini
Noriko Shimasaki
Seow See Voon
Sally Chai
Png Yi Tian
Arthur Yong
Chan Jing Ru

TECT: Ping Law, Soh Teck Guan, Liew Yun Rou

Collaborators
Antonio Bertoletti, Kousako Mimura, Koji Kono

Quah Thuan Chong Koh Liang Piu Linn Yeh Ching (SGH)
Tan Poh Lin Lim ZiYi William Hwang (SGH)
Allen Yeoh Chng Wee Joo Aloysius Ho (SGH)
Chetan Dhanme Tan Lip Kun
Marie Villegas

St Jude
Chihaya Imai
Hiroyuki Fujisaki
Harumi Kakuda
Duck Cho
David Shook
Wing Leung
Tim Lockey
Paul Eldridge