Managing Particulates in Cellular Therapy

ISCT Process and Product Development Sub-committee

Dominic Clarke, Ph.D.
Charter Medical, Ltd. Cellular Therapy Products
June 7, 2012
Particulates

- What are particulates
- What risks do particulates pose
- What guidances currently exist to monitor particulates
- Where do they originate in the process
- What test methods exist
- What are the next steps for cell therapy
Cell Therapy and Particulates

Cell Therapy

Blood Transfusion

Pharma

No specific guidance

Numerous guidances

?
What are particulates

- Particulate
 - Discrete undissolved object or foreign material found in a solution that is unintentionally present in final product
 - Viable as opposed to Non-viable
 - Visible, Sub-visible, Submicron

- Based on the nature of the product itself—**a cell is a particulate**
- In cell therapy—the cell is the active ingredient in the product

Challenge—What is inadvertently added during cell therapy processing may be difficult to remove at the end
Associated Risks to Particulate Matter

• Patient safety
 - Anecdotal studies
 - Formation of emboli and granulomas most common result from IV solutions
 - Subvisible particulate often trapped in liver, lungs and spleen
 - Larger (visible) particulate generally don’t migrate far from injection site
 - Route of administration will need to be considered for each product

• Product performance
 - Particulate could potentially interfere with biological efficacy of cell therapy
Particulate Beads Dendritic Cell Red Cells

nm – mm

50 - 250µm 20 - 40µm 6 - 8µm
Particulate Origination/Accumulation

• Raw Materials/Disposables
 - Type of product and starting material
 - Manufacturing quality systems and controls
 - Materials designated for “R&D Use” or “Non GMP Grade”
 - Pharmaceutical or clinical grade material

• Cell Therapy Manufacturing Process
 - Quality of starting raw materials
 - Cells/biological material
 - Disposables, equipment, etc.
 - Inherent to the actual production process
 - Manufacturing quality systems and controls
 - Number and complexity of processing steps
Commonly Observed Particulates and Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Raw Material</th>
<th>Disposable</th>
<th>Final Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture media</td>
<td>Flasks/tubes</td>
<td>Biological (from original</td>
<td></td>
</tr>
<tr>
<td>Storage media</td>
<td>Plates/Dishes</td>
<td>cellular starting material)</td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>Bags/vials</td>
<td>Raw materials</td>
<td></td>
</tr>
<tr>
<td>Buffer solution</td>
<td>Tubing sets</td>
<td>Process disposables</td>
<td></td>
</tr>
<tr>
<td>Reagents, etc.</td>
<td>Filters</td>
<td>Operators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipettes</td>
<td>Primary Containers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syringes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sterile gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beads</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stoppers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Protein aggregates</td>
<td>Cell (aggregates)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minerals (salts)</td>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Fibers</td>
<td>ECM (extracellular matrix)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plastic fragments</td>
<td>Organic fibers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inorganic particles</td>
<td></td>
</tr>
</tbody>
</table>
Particulate Testing Methods

• Visual Inspection
 - Examination of product held against white or black background
 - 100% inspection
 - Useful for particulate >100µm

• USP<788> Testing Particulate Matter for Injection
 - Guidelines for sub-visible particulate testing and allowable limits
 - Refer also to
 - Ph.Eur. 2.9.19. Particulate Contamination: Sub-visible Particles
 - JP 6.07 Insoluble Particulate Matter Test for Injections

• New methods likely required as no specific method will apply to all products

* No current required testing/limits established for cell therapy
Current USP<788> Testing Particulate Matter for Injection

<table>
<thead>
<tr>
<th>Volume</th>
<th>Particle Size Microscopic Limits:</th>
<th>Particle Number Microscopic Limits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Parenteral Volume (> 100mL)</td>
<td>>10 micron</td>
<td>12 per ml</td>
</tr>
<tr>
<td></td>
<td>>25 micron</td>
<td>2 per ml</td>
</tr>
<tr>
<td>Small Parenteral Volume (< 100mL)</td>
<td>>10 micron</td>
<td>6000 per container</td>
</tr>
<tr>
<td></td>
<td>>25 micron</td>
<td>600 per container</td>
</tr>
</tbody>
</table>
Points to Consider

- It is essential to determine a control strategy for particulate early in the product development lifecycle
 - Consider:
 - What composition, size and amount can be considered safe?
 - How will particulates inherent to respective process be monitored?
 - What will be acceptable and what test/s can be performed?
 - Can cell therapy product manufacturers be compliant with current requirements for particulates in injectables?
 - Minimally manipulated vs. Complex processes

- Some principles of current guidances can be considered, but certainly not in their entirety
Potential Strategy/Next Steps

• Start by determining product classification and consider compliance with current industry standards
 - Minimally manipulated manufacturing process
 - More closely resembling blood or blood component manufacturing activities
 - Complex, more than minimally manipulated process
 - More analogous to parenteral drug solutions in pharmaceutical industry

• Cell therapy developers, manufacturers and suppliers should all be working closely very early in the process
Potential Strategy/Next Steps

• Specific areas to consider:
 - Qualification/screening of raw materials, disposable process equipment and final product containers
 - Full assessment of manufacturing process (via FMEA) to identify ingress routes and establish controls
 - Periodic process validations
 - Collection of data to determine “expectable” particulate burden
 - Establish visual inspection process
 - Confirmation of effectiveness
 - Batch Accept/Reject rate
 - Filtration of solutions if/where possible
 - Delivery method/route for final product
 - Employ more clinical/pharmaceutical grade materials for manufacturing

* Characterizing particulate early in the manufacturing process is key
Summary

- The field of cellular therapy is presented with some obvious challenges with respect to particulates.
- One set of guidelines for product particulates does not apply equally well between cell therapy, blood products, and pharma products.
- No specific test or method for particulates will apply to all products.
- Guidance documents will be generated over time as more and more cell therapy products are approved.
- For cell therapy, the work needs to be done upstream making sure that adequate controls are in place to control the level of particulate matter.
- Ultimately, it will be important for members of the cell therapy community to define what is reasonable for the industry.
THANK YOU

Acknowledgements:
ISCT
ISCT Product and Process Development Committee
Particulate Project Team Members

For Additional Questions:
DClarke@Lydall.com
336-714-4217