The Importance of Longevity

Economics of cow age in today’s beef industry

Bethany Funnell, DVM
University of Minnesota
North Central Research and Outreach Center
lova0011@umn.edu

The Beef producer

- Older (average age 58)
- Frugal
 - Qualification – out pocket expenses
- Cynical/skeptical
- Critical of and reluctant to change
- Spell out all costs in real numbers!

Why are cows culled?

- Reproductive failure is the #1 reason cows leave the herd
 - First calf heifers are the greatest reproductive challenge!

- NAHMS Beef 2007-2008 –
 Q6. Of the (Item 3e) cows sold for purposes other than breeding (culls), how many were sold primarily because of:
Reasons for culling cows

Current Drought Recommendations

- Massive herd reductions:
 - Compensate for high feed costs
 - No feed availability
- Alternative management plans?
 - No heifer retention
 - Tighten up calving season

Lazy L Calving Distribution Sample Herd Numbers

Herd Size Distribution

- 5-100 Head: 12%
- 101-200 Head: 10%
- 201-500 Head: 2%
- 501-1000 Head: 0%
- Over 1000 Head: 11.6%

Herd Size

Cull Cows

Massive herd reductions:

- Compensate for high feed costs
- No feed availability

Alternative management plans?

- No heifer retention
- Tighten up calving season

Lazy L Calving Distribution Sample Herd Numbers

<table>
<thead>
<tr>
<th>Herd Size</th>
<th>Brings</th>
<th>Calves</th>
<th>Cows</th>
<th>Heifers</th>
<th>Bulls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>34</td>
</tr>
</tbody>
</table>

 Lazy L Calving Distribution Sample Herd Numbers

<table>
<thead>
<tr>
<th>Herd Size</th>
<th>Brings</th>
<th>Calves</th>
<th>Cows</th>
<th>Heifers</th>
<th>Bulls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>34</td>
</tr>
</tbody>
</table>
Cost of Weaning

- 83% of replacement heifers are home-raised (NAHMS Beef 2007-2008)
- No up front purchase price, but there is a substantial cost!
- Cost of Retention and Development
 - Opportunity cost as feeder calf: $1.40/lb for 600 lb calf – $840

Running Balance: -$840

Cost of Development

- Feed costs for development:
 - Heifer should be 65% of mature weight at breeding
 - Assuming mature weight of 1,400 lbs
 - 600 lb weaning weight (Nov) to 910 lb breeding weight (June)
 - 310 lbs of gain over 200 days – ADG of 1.6 lbs/day

Example development ration (as fed)

- Grass Hay – 12 lbs
- Dried Distillers’ Grains – 3 lbs
- Corn Screenings – 3 lbs
- Vit/Mineral supplement – 0.19 lbs
Cost of development

- Value of feedstuffs over 200 day development period
 - Grass Hay: 1.2 ton ($190/ton)
 - Dried Distillers' Grains: 600 lbs ($250/ton)
 - Corn Screenings: 600 lbs ($215/ton)
 - Vit/Mineral Supplement: 38 lbs ($30/hd)
 - Misc costs (vaccinations, medications, pen loss, etc)
- Total cost for heifer development: $500/hd
- Opportunity cost as feeder calf: $840

Running Balance: -$1340

Cost Of Bred Heifer

- Cost of breeding: *$100/hd
 - Synchronization & AI
 - Therapies/Doc: $0-$18
 - Semen: $10-
 hundreds
 - bull costs/hd: $75/hd
- Summer pasture** (6 months): $164/hd
 - Pasture maintenance - $60/ac/yr
 - Brad heifer - 0.6 AU
- Feed cost during second winter (5 months): $400
 - Hay (4000 lb/400 lb/day) - 8 tons
 - Corn Screenings - #100 lbs
 - Vitamin/mineral supplement - 1 lb
- Cost of summer pasture**
 (2nd year): $2380/ac
 - Pasture maintenance - $128/ac/yr
 - Cow/calf pair - 1.2 AU

*Carrying Capacity = 1
AU/acre
Cost of Bred heifer

- Total cost to first weaning
 - Opportunity cost on a related heifer - $340
 - Cost of development - $500
 - Breeding expenses - $300
 - Cost of 1st summer pasture - $164
 - Cost of 2nd summer pasture - $400
 - Cost of 2nd winter - $400
 - Total cost - $2,200

- Revenue generated from sale of first calf

Cow Amortization Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Balance</th>
<th>Feed/Breeding costs</th>
<th>Calf value</th>
<th>New Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$840</td>
<td>$500</td>
<td>$00</td>
<td>$1,340</td>
</tr>
<tr>
<td>2</td>
<td>$1,340</td>
<td>$580</td>
<td>$750</td>
<td>$1,450</td>
</tr>
<tr>
<td>3</td>
<td>$1,450</td>
<td>$616</td>
<td>$825</td>
<td>$1,241</td>
</tr>
<tr>
<td>4</td>
<td>$1,241</td>
<td>$616</td>
<td>$900</td>
<td>$957</td>
</tr>
<tr>
<td>5</td>
<td>$957</td>
<td>$616</td>
<td>$900</td>
<td>$673</td>
</tr>
<tr>
<td>6</td>
<td>$673</td>
<td>$616</td>
<td>$900</td>
<td>$389</td>
</tr>
<tr>
<td>7</td>
<td>$389</td>
<td>$616</td>
<td>$900</td>
<td>$105</td>
</tr>
<tr>
<td>8</td>
<td>$105</td>
<td>$616</td>
<td>$900</td>
<td>$179</td>
</tr>
</tbody>
</table>

Return on Investment

Assumptions:
- Heifer develop: $500
- Cow costs: $616/yr
- 1st Sale: 500 lbs @ $1.50/lb
- 2nd Sale: 550 lbs @ $1.50/lb
When is she a profit maker?

- After she weans calf #6, 7, or 8?
- If annual cow costs are less than average
- If weaned offspring are worth more than feeder calf prices
 - Marketing of replacement heifers and bulls
- Market value as a cull cow

Return on Investment

![Cumulative Profit Graph](image)

Assumptions:
- Heifer develop: $368
- Cow costs: $450/yr
- Sale 550 lb @ $1.50/lb

![Cumulative Profit Chart](image)

How long is she a profit maker?

- Age (value) at sale
- Lifetime number of calves weaned
 - Abortion
 - Preweaning mortality
- Performance of weaned calves
 - Older cows will bring home a smaller calf
 - Structural soundness problems
 - Teat and udder problems
 - Bad teeth/no teeth
 - Cow costs: $450/yr
Proportion Remaining in Herd: n = 16,469 (1980 to 2000)

Day 1 to 21
Day 22 to 42
> Day 42

P < 0.01

Time of 1st calving and retention in herd

Years of Age

Heifer development Hurdles

- HACCP Approach
 - Hazard Analysis – Females leaving the herd prematurely
 - Critical Control Points
 - Selection
 - Groceries
 - Breeding
 - Gestation
 - Calving
 - Rebreeding

Time of 1st calving and calf weights

Weaning Weight, lbs.

* P < 0.05

1 to 21
22 to 42
43 and after
Heifer Selection and development

- Biggest, oldest heifers
- Heifers born early in the calving season will most likely have attained puberty before the breeding season
- Keep more heifers than needed
 - Heifers that do not conceive early can be marketed
- Create a development program appropriate for the individual beef operation
 - Determine resources (feed, finances)
 - Establish producer expectations

Heifer Breeding and Gestation

- Breed heifers 2-4 weeks before cows
 - Allows more time for first calf heifers to resume cyclicity
- Use known calving ease sires
- Manage heifers separately from the cowherd for as long as possible
- Manage nutrition during gestation to address heifer issues
 - Body condition of heifer at calving
 - Birth weight of calf

Heifer calving and Rebreeding

- Monitor heifers closely before and during calving
 - NAHMS 2007-2008
- Address dystocia early and appropriately to maximize calf survival and minimize stress on heifer
 - Educate! Educate! Educate!
- Nutrition, Nutrition, Nutrition
 - Manage first calf heifers separately from the cowherd for as long as possible
Other considerations

- Structural soundness
 - Cows with bad feet don’t last long
- Animal type must fit the environment
 - Small vs large frame, deep ribbed vs shallow bodied, etc
- Maximize maternal traits
 - Select for highly fertile females
 - Utilize heterosis!

Maternal Heterosis:
Advantage of the Crossbred Cow

<table>
<thead>
<tr>
<th>Trait</th>
<th>Units</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving rate, %</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Survival to weaning, %</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Birth weight, lb</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Weaning weight, lb</td>
<td>18.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Longevity, yr</td>
<td>1.16</td>
<td>16.2</td>
</tr>
</tbody>
</table>

Cows Lifetime Production

<table>
<thead>
<tr>
<th>Trait</th>
<th>Units</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td># Calves</td>
<td>0.97</td>
<td>17.0</td>
</tr>
<tr>
<td>Cumulative weaning wt, lb</td>
<td>600</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Adapted from Cundiff & Gregory, 1992

Questions/Discussion

- Thank You!
References

• DiCostanzo, A. 2012. Feed costs for developing heifers. Personal communication University of Minnesota College of Food, Agricultural, and Natural Resource Sciences.