Advanced Reproductive Techniques in Small Ruminants

Jason W. Johnson, DVM, MS, Dip ACT
Medical Director Large Animal Teaching and Research Center
Assistant Professor of Theriogenology
Lincoln Memorial University College of Veterinary Medicine
Harrogate, TN and Ewing, VA
jason.johnson@lmunet.edu

Artificial Insemination

- Advantages:
 1. Improve genetics
 2. Improve herd management
 3. Inexpensive semen
 4. Eliminate bucks & rams
 5. Decrease venereal disease

Artificial Insemination

- Disadvantages:
 1. Increased labor
 2. Lack of standardization for packaging & freezing semen
 3. Costs of AI equipment & semen storage

Success of AI Programs

- Fresh vs. frozen semen
- Number of inseminations
- Insemination method
- Timed A-I, Inseminated to standing heat
- Quality & quantity of semen
- Semen handling practices
- Management; nutrition, health programs
Selection of does and ewes for AI

• Good health & free of disease, reproductively sound,
• “Flush” feeding for 2-5 weeks before breeding
• Body condition score of 2.5 to 3

Body Condition Scoring

• Simple, fast but need to put your hands on them due to wool and hair concealing the accurate BCS
• Monitor feeding & herd health programs
• 1.0 to 5.0 scale with 0.5 increments

Body Condition Scoring

• Evaluate 3 areas:
 1. Lumbar area
 - spinous & transverse processes
 - muscle & fat over vertebrae
 2. Sternum
 - size of the fat pad
 3. Ribs
 - fat cover over ribs

BCS 1
Selection of does/ewes for AI

- History
 - birth of live, healthy kids & lambs
 - raised those kids to weaning

- Preference
 - does & ewes that conceive early
 - raise multiple young

AI Programs

- There are no uniform standards for frozen semen
- Evaluation of semen before insemination
- 70% morphologically normal
- (not greater than 15% primary abnormalities, at least 30% progressively motile)
 - inseminate into uterus

Protocol for synchronization of ewe for artificial insemination

- Progestin: Implant, Vaginal sponge, CIDR
- Teasing by vasectomized ram
- GnRH 30-36 hrs
- Inseminate with fresh semen
- Inseminate with frozen semen

Recognition of Estrus

- Recognizing standing heat
 - Flagging tail, restless, urination
- Changes in cervical mucus
- ovulate late in estrus or shortly after the end of estrus
- beginning of standing heat = clear & thin
- middle to late heat = cloudy & stringy

JrJohnson: Theriogenology of Sheep and Goats, Sheep and Goat Medicine, DG Pugh 2nd ed.
Timing of Insemination

- Insemination
 - ≤ time mucus turns cloudy
 - us. 12-15 hours after onset of estrus
 - if doe or ewe continues to exhibit heat after insemination inseminate again after 12 hours, particularly if the program uses cooled or frozen semen

Vaginal Insemination

- Does
 - 3 x 10^9 fresh semen
- Ewes
 - 4 x 10^9 fresh semen
- Conception rates
 - 15-30%
 - higher with experience

Vaginal Insemination

- Equipment
 - Cassou gun
 - +/− speculum
 - 1. Clean vulva
 - 2. Advance pipette into cranial vagina
 - dorsal vaginal roof

Cervical Insemination

Equipment - speculum & light source

1. Elevate hindquarters & legs held over a table or bale of hay
2. Introduce a lubricated speculum ~12cm through cleaned vulva & into vagina
3. Visualize cervix and atraumatically pass pipette as far in to cervix as possible
Cervical Insemination

- More skill required
- Dose:
 - ewes-1 x 10^9 fresh semen
 - 1.5 x 10^9 cooled semen
 - 2 x 10^9 frozen semen
- Conception rates
 - 35-50% or higher

Transcervical Insemination

- Place semen directly into uterus

Transcervical AI
- Cervix of the does is easier to pass a pipette than a ewe
- 35-50% conception rate
- Sheep 50-100 million sperm cells
- Goats 150-200 million sperm cells

Transcervical Insemination

- In ewes- Guelph system
- Equipment
 - speculum
 - wand-type light source
 - 25cm Bozeman forceps
 - pipette
- 50-100million PM spermatozoa
- Conception rates
 - 40-70% lambing rates depending upon skill of operator & quality of semen

Transcervical Insemination

The Doe
1. Clean vulva & perineal area
2. Standing or “over the rail”
3. Insert lubricated speculum & light source
 - Visualize cervix & place pressure on spec to lock cervix into lumen
- 50-100 million PM spermatozoa
- Conception rates of 50-80%
- 150-200 million sperm
Artificial Insemination

- Laparoscopic AI
 - Used more commonly
 - Higher conception rates
 - Up to 90%
 - Lower breeding doses
 - Doe – 20 million sperm cells
 - Ewe – 50 million sperm cells

Transcervical Insemination

Laparoscopic Insemination

- Visualization of uterus
- Place semen directly into lumen
- Used more commonly
 - Higher conception rates
 - Up to 90%
 - Lower breeding doses
 - Doe – 20 million sperm cells
 - Ewe – 50 million sperm cells

Laparoscopic Insemination

- Equipment
 - laparoscope
 (6.5-10mm diameter, 0° telescope)
 - trocar/cannula
 - insemination needle
- IMV
Laparoscopic Insemination

• Conception rates
 - 20-90%
 - dependent upon quality & quantity of semen & of course operator

Laparoscopic Insemination

• Hold off feed/h20 24 hrs
• Sedate doe or ewe & place in dorsal recumbency, head tilted down at 45° angle
• Clip & prepare abdomen for aseptic sx

Laparoscopic Insemination

• Infiltrate local anesthetic into 2 sites
 - 5 cm cranial to udder,
 4 cm on either side of midline
Laparoscopic Insemination

Trocar placed & distend abdomen with 1-2 L of CO₂
Second trocar placed opposite the first
Laparoscope inserted into first trocar & uterus visualized
Insemination pipette inserted into second trocar
Each horn inseminated using a special needle on the end of the pipette

Laparoscopic Insemination

• Insemination
 - avascular area of anterior uterine horn
 - insert needle at right angle to the uterine wall
 - make sure needle is in the lumen
 - experienced AI technician = 3-8 minutes

Semen Collection and Storage

• Collection AV
 – Raw- 0.1mL dosage of good quality semen
 – Extended 1:1 to 1:4; can dilute at 30°C with extender and then cool to 4°C and kept 12-24 hours

Cryopreservation of Semen

• Methodology still changing
• Some basics
 – Concentration > 3mill/mL with motility of 70%
 – Minitube makes extenders
 – Place in incubator or water bath 30°C
 – Slowly cool to 5°C over 1-2hr period
 – Then add freeze buffer to achieve final desired concentration (usually add 1:1)
 – Into straws; over liquid vapor 10min then plunge
Embryo Transfer

- Estrus Synchronization
- Superovulation
- Artificial Insemination
- Embryo Collection – Laparoscopic or Surgical
- Embryo Transfer

Embryos Transferred Worldwide in Other Species

IETS Newsletter December 2006

- 25,000 Ovine
- 7,000 Caprine
- ≥ 300 Cervid
- 14,000 Equine
- 30,000 Swine

Protocol for superovulation and synchronization in the doe

- Progestin: Implant in vaginal sponge CIDR
- AM FSH PM FSH
- PMSG (eCG)
- Ram: Give 50 µg GnRH
- Ram remains or lap Al
- Remove progestin
- Teaser Ram: 50 µg GnRH
- Remove food/water
- Transfer embryos

JW Johnson. Sheep and Goat Medicine 2nd ed DGPugh
Protocol for ewe superovulation and synchronization

In vivo - Surgical Embryo Collection
- Ventral laparotomy, flank, paramedian incision cranial to the udder
- 35mL of fluid per horn (Emcare)
- Antegrade flush; uterine tube to body with a foley (9 FG) in the horn or body
- Fluid is collected into a petri dish

Embryo Recovery
- Recovery 5-7 days post breeding as late morula or early blastocyst
- Most use surgical methods for recovery

Recumbant Flank Approach
Potential Complications

- General anesthesia
- Adhesions
- Herniation
- Peritonitis
Questions