New Therapies for Pituitary Diseases

Katharine F. Lunn
BVMS MS PhD MRCVS DACVIM
Assistant Professor
Department of Clinical Sciences
Colorado State University

Outline

• Normal anatomy/physiology
• Pituitary disease
 • Pituitary-dependent hyperadrenocorticism
 • Acromegaly

Pituitary Gland

• Posterior Pituitary
 • Pars nervosa
• Anterior Pituitary
 • Pars intermedia
 • Pars distalis

Hormones of the anterior pituitary

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Hormones</th>
<th>% of secretory cells</th>
<th>Stain affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatotrope</td>
<td>GH</td>
<td>50</td>
<td>Acidophilic</td>
</tr>
<tr>
<td>Lactotrope</td>
<td>Prolactin</td>
<td>10-30</td>
<td>Acidophilic</td>
</tr>
<tr>
<td>Corticotrope</td>
<td>ACTH</td>
<td>10</td>
<td>Basophilic</td>
</tr>
<tr>
<td>Thyrotrope</td>
<td>TSH</td>
<td>5</td>
<td>Basophilic</td>
</tr>
<tr>
<td>Gonadotrope</td>
<td>FSH, LH</td>
<td>20</td>
<td>Basophilic</td>
</tr>
</tbody>
</table>

• From Ganong, Review of Medical Physiology

Pituitary Disease

• Tumors
 • Functional - any cell type possible
 • Corticotrope adenoma in the dog
 • Somatotrope adenoma in the cat
 • Non-functional
 • Mass effect
 • Clinically silent
• Other
 • Diabetes insipidus
 • Hypopituitarism

Canine Cushing’s Syndrome (CCS)

• Syndrome characterised by chronic excess of systemic cortisol
 • Pituitary tumor making excess ACTH (most common)
 • Pituitary hyperplasia due to excess CRH (not dogs and cats)
 • Autonomous adrenocortical tumor
 • Iatrogenic
 • Excess ACTH (rare)
 • Excess glucocorticoids (common)
 • (ACTH from non-pituitary sources - not dogs and cats)
Canine Pituitary-Dependent Hyperadrenocorticism (PDH)

- Etiology
- Clinical signs
- Treatment options
 - Adrenals
 - Pituitary

Canine PDH

- 80-85% dogs with HAC
- Most have pituitary tumor in pars distalis
 - Can occur in pars intermedia
- Most microadenomas (< 1 cm)
- 10-20% macroadenomas (> 1 cm)
- Pituitary “hyperplasia” poorly defined and rare
- Little support for hypothalamic cause of PDH

Canine PDH

- Pituitary Tumors: 33 dogs*
 - Adenoma (20 dogs - 61%)
 - Invasive adenoma (11 dogs - 33%)
 - Locally invasive
 - Compress local structures
 - Adenocarcinoma (1 dog - 6%)
 - Evidence of metastasis

*Pollard et al, JVIM, 2010, 24:160-165

Neurological Signs in PDH?

- Wood et al, 2007 - JAVMA
- 157 dogs with PDH
 - 73 had CNS-specific neuro signs
 - 48 (66%) had a detectable pituitary tumor
 - 41 (56%) had no detectable tumor, or a microtumor
 - 84 no CNS-specific neuro signs
 - 60 (71%) had a detectable pituitary tumor
 - 17 (20%) had a macrotumor

Neurological Signs in PDH?

- Wood et al, 2007 - JAVMA
- 157 dogs with PDH
- Vague signs more specific for macrotumor than CNS-specific signs
 - Lethargy, dullness
 - Loss of appetite

Neurological Signs in PDH?

- Wood et al, 2007 - JAVMA
- 157 dogs with PDH
- Vague signs more specific for macrotumor than CNS-specific signs
 - Lethargy, dullness
 - Loss of appetite
PDH Therapy: Mitotane

- (Occasionally used for AT:
 - Pre-surgical stabilization
 - Surgery not an option)

- Effective
- Safe, if used carefully

Mitotane

- 2 phases of therapy:
 - Loading/induction
 - Maintenance

- Monitoring is key:
 - ACTH stimulation test
 - Determine end-point of induction
 - Confirm ongoing successful maintenance

Mitotane: Induction

- Successful induction is achieved when basal and post-ACTH cortisol: both < 4 (5) µg/dl and > 1 µg/dl
- Most cases take 5 - 15 days

Mitotane: Maintenance

- Give daily induction dose weekly (divided)

 - Example:
 - 10 kg dog required 250 mg BID for induction (7 days)
 - Maintenance dose would be 250 mg twice weekly
 - Divide dose (125 mg BID)

- Continue to monitor with ACTH stimulation tests

Mitotane: Side-Effects

- Vomiting, diarrhea, loss of appetite
 - Not uncommon, often transient

- Lethargy
 - Not uncommon, often transient

- Neurological signs (DDx: pituitary tumor)
 - Very uncommon, usually transient
 - Blindness, ataxia, obtundation, circling, head-pressing
 - Reduce dose, give smaller increments

- Hepatotoxicity
 - Webb, JAAHA 2006
Iatrogenic Hypoadrenocorticism

- Cortisol deficiency alone:
 - Pre- and post-ACTH cortisols both < 0.2 µg/dl
 - Supplement with prednisone (0.1 - 0.2 mg/kg)
 - Follow ACTH stimulation tests
 - Usually recover (may take days, weeks, or months)

- Cortisol and aldosterone deficiency (< 5%):
 - Pre- and post-ACTH cortisols both < 0.2 µg/dl
 - Abnormal electrolytes
 - Do not recover
 - Manage as Addisonian
 - Damage to zona glomerulosa

Prognosis

- Dogs with PDH on mitotane:
 - Feldman and Nelson
 - 1500 dogs
 - Dogs that have died - mean survival 31.6 m
 - (range: few days to several years)
 - >35% relapse
 - 5% mildly overdosed during induction
 - Dogs that died:
 - 37% related to HAC
 - 20-30% due to pituitary tumor
 - <1% due to mitotane overdose

Mitotane Publications

- Remarkably Few!
 - Kintzer and Peterson, 1991
 - 200 dogs with PDH
 - 80% efficacy
 - 31% adverse effects
 - 6% Addisonian crisis (none died)
 - 58% relapsed
 - Median survival = 620 days

Cushing’s Therapy: Other Medications

- Ketoconazole
 - Inhibits steroid synthesis in adrenal cortex
 - 5 mg/kg BID for 7 days, then 10 mg/kg BID - 20 mg/kg BID
 - Monitor with ACTH stimulation test
 - Works in about 50% PDH cases
 - Side-effects (vomiting, anorexia, diarrhea, elevated liver enzymes)

Cushing’s Therapy: Other Medications

- l-deprenyl
 - PDH only
 - Poor efficacy
 - “L-Deprenyl should not be used in the treatment of dogs with PDH” (Feldman and Nelson, 3rd Edition, 2004)

Cushing’s Therapy: Trilostane

- Vetoryl®
 - Tested and licensed in Europe and USA for canine Cushing’s
 - Competitively inhibits steroid synthesis
 - Inhibits 3β-hydroxysteroid dehydrogenase
 - Converts pregnenolone to progesterone
 - Converts 17-OH pregnenolone to 17-OH progesterone
Cushing’s Therapy: Trilostane

- Vetoryl®
 - Appears safe and effective
 - Monitor with ACTH stimulation tests
 - Adrenals keep getting bigger
 - Some reports of adrenal necrosis
 - One case report of successful therapy of adrenal tumor (80 weeks)
 - One case series of 3 dogs with adrenal metastasis (survived 11m, 16m, and 10 m)
 - Has been used in small number of cats

 - 78 dogs with PDH
 - 2 became hypoadrenocortical
 - 1 resolved when trilostane stopped
 - Dose:
 - < 5 kg: 30 mg; 5-20 kg: 60 mg; > 20 kg: 120 mg
 - BID dosing better (short duration of action)?

 - Long-term efficacy of trilostane administered twice daily in dogs with pituitary-dependent hyperadrenocorticism
 - 44 dogs with PDH
 - Followed for 6 - 42 months
 - 15 dogs died
 - 8 unrelated diseases
 - 2 from HAC complications
 - 4 unknown
 - 1 lost to follow-up
 - 5 dogs: treatment stopped due to low cortisol
 - 1 required mineralocorticoid and glucocorticoid

- Vaughan et al., JAVMA, 2008
 - Evaluation of twice-daily, low-dose trilostane administered orally in dogs with naturally occurring hypoadrenocorticism
 - 90% responded well
 - 9% adverse effects
 - 2 dogs were sick with high K and low Na
 - Had some cortisol secretion
 - Differential effects on aldosterone and cortisol

- Feldman, JAVMA, 2011
 - Evaluation of twice-daily, lower-dose trilostane administered orally in dogs with naturally occurring hypoadrenocorticism
 - 38 dogs with PDH
 - Started at 0.84 (+/- 0.22) mg/kg
 - Mean dose at 1 yr: 1.7 mg/kg BID, or 1.1 mg/kg TID

Using Trilostane

- Start with lower dose
 - 1 mg/kg BID
- ACTH stimulation tests
 - Start 4-6 hours post-pill
 - 10-14 days
 - Monthly
 - Whenever clinical signs change
Using Trilostane
- ACTH stimulation test
 - Aim for pre and post values between 2 and 6 ug/dl
 - ACTH response may decrease over time
 - Do not be too quick to increase dose

Using Trilostane
- SID or BID?
 - No good comparisons performed
 - May depend on size of dog and size of capsule
 - Use BID if ACTH stim results are good on SID, but clinical signs persist
 - Interpret ACTH stim results and clinical signs together

Using Trilostane
- Just use Vetoryl!
- Compounded trilostane?
 - No!
 - Recent study
 - Marked variability within batches of medication
 - Marked variability between batches of medication
 - Several pharmacies evaluated

Mitotane or Trilostane: Which to Use?
- Effectiveness?
- Side-effects?
- Cost?
- Owner preference
 - Costs
 - Protocol/dosing

Mitotane vs. Trilostane Effectiveness
- Barker et al., JVIM, 2005
 - Median survival = 708 days (M)
 - Median survival = 662 days (T)

- Clemente et al., Vet Rec, 2007
 - Median survival = 720 days (M – non-sel)
 - Median survival = 900 days (T - BID)

Mitotane vs. Trilostane Side-Effects
- Mitotane
 - Kintzer and Peterson
 - 31% adverse effects (usually mild)
 - 6% addisonian crisis
 - Feldman and Nelson
 - 5% mild overdose in induction
 - < 1% died from mitotane overdose
Mitotane vs. Trilostane Side-Effects

- **Trilostane**
 - Neiger
 - 5% serious adverse effects (4 died; 1 Addisonian)
 - Alenza
 - 11% Addisonian
 - Vaughan
 - 9% Addisonian
 - Braddock
 - 13% Addisonian
 - Feldman
 - 10% ill (2% hospitalized)

Mitotane vs. Trilostane Cost Comparison

- **CSU**
 - Mitotane 500 mg = $8.91
 - Trilostane 10 mg = $1.88
 - Trilostane 30 mg = $2.34
 - Trilostane 60 mg = $3.05
 - Cortrosyn = $112 (1 vial)
 - Cortisol = $31

10 kg dog – month 1

- **Mitotane**
 - 50 mg/kg/day for 10 day induction
 - $8.91 \times 10 = $89.10
 - 50 mg/kg/week for 3 weeks
 - $8.91 \times 3 = $26.73
 - $115.83 (+ 1 ACTH stim test)
 - 50 mg/kg/week for 3 weeks
 - $8.91 \times 3 = $26.73
 - $115.83 (+ 1 ACTH stim test)

- **Trilostane**
 - 1 mg/kg BID for 31 days
 - $1.88 \times 2 \times 31 = $116.56 (+ 1 ACTH stimulation test)
 - Assume no dose increase!

10 kg dog – month 2

- **Mitotane**
 - 50 mg/kg/week
 - $35.64
 - 4 weeks
 - 1 ACTH stimulation test

- **Trilostane**
 - 1 mg/kg BID
 - $105.28
 - 4 weeks
 - 1 ACTH stimulation test

20 kg dog – month 1

- **Mitotane**
 - 50 mg/kg/day for 10 day induction
 - $8.91 \times 20 = $178.20
 - 50 mg/kg/week for 3 weeks
 - $8.91 \times 6 = $53.46
 - $231.66 (+ 1 ACTH stim test)
 - 50 mg/kg/week for 3 weeks
 - $8.91 \times 6 = $53.46
 - $231.66 (+ 1 ACTH stim test)

- **Trilostane**
 - 1.5 mg/kg BID for 31 days
 - $2.34 \times 2 \times 31 = $145.08 (+ 1 ACTH stimulation test)
 - Assume no dose increase!

20 kg dog – month 2

- **Mitotane**
 - 50 mg/kg/week
 - $71.28
 - 4 weeks
 - 1 ACTH stimulation test

- **Trilostane**
 - 1.5 mg/kg BID
 - $131.04
 - 4 weeks
 - 1 ACTH stimulation test
30 kg dog – month 1

- Mitotane
 - 50 mg/kg/day for 10 day induction
 - $8.91 x 30 = $267.30
 - 50 mg/kg/week for 3 weeks
 - $8.91 x 9 = $80.19
 - $347.49 (+ 1 ACTH stim test)

- Trilostane
 - 1 mg/kg BID for 31 days
 - $2.34 x 2 x 31
 - $145.08 (+ 1 ACTH stimulation test)

30 kg dog – month 2

- Mitotane
 - 50 mg/kg/week
 - $106.92
 - 4 weeks
 - 1 ACTH stimulation test

- Trilostane
 - 1 mg/kg BID
 - $131.04
 - 2 mg/kg BID
 - $170.80
 - 4 weeks
 - 1 ACTH stimulation test

Cost Comparison

- Small dog
 - Mitotane and trilostane equivalent in first month (mitotane induction is expensive)
 - Mitotane much less expensive in maintenance phase

Cost Comparison

- Medium to large dog
 - Mitotane more expensive in first month
 - Differential is greater for larger dogs
 - Mitotane less expensive in maintenance phase

Cost Comparison

- Assumes no dose increase
- Have to consider cost of reinduction on mitotane – this is not needed with trilostane
- Have to consider cost of ACTH stimulation tests
 - $120 for small dog
 - $180 for large dog

Transitioning Between Medications

- Stop first medication
 - Monitor clinical signs and ACTH stimulation tests
 - Start second medication when have clinical signs and exaggerated response to ACTH (high normal or above normal post-ACTH cortisol)
 - Probably happens more quickly with trilostane
What about the pituitary tumor?

- Will progress over time

 - Bertoy, 1996
 - 13 dogs – MRI at time of diagnosis
 - 8 had a pituitary mass
 - None had clinical signs of the tumor
 - 1 year later
 - 4 of 8 tumors had enlarged
 - 2 dogs had newly visible tumors
 - 2 of 13 dogs had neurological signs

Treatment of the tumor?

- Surgery
 - Treatment of choice in humans
 - Not widely available in the US for dogs or cats
 - Is used in Europe
 - Case series of 150 dogs
 - 65% success overall
 - 127 in remission – 32 relapsed
 - 53% developed central diabetes insipidus

Treatment of the tumor?

- Radiation therapy
 - Adjunctive therapy in humans
 - Several case reports in dogs
 - Tumor size decreases
 - Reduces neurological signs
 - Increases survival
 - Endocrine benefits are unclear

Treatment of the tumor?

- Stereotactic radiation therapy (SRT)
 - Used in humans
 - Better endocrinological cure rates than conventional radiation therapy?
 - Some use in dogs and cats

SRT Background

- Stereotactic Radiosurgery
 - Geometrically accurate delivery of very high doses of radiation
 - Target defined by high resolution stereotactic imaging
 - Development driven by neurosurgeons to give single large dose of radiation to brain lesion
 - Gamma knife

- Stereotactic Radiation Therapy (SRT)
 - New generation of technology
Background

- Varian Trilogy™ System
 - On-board imaging
 - Ensures accurate patient positioning for multiple fractions
 - Treatment planning
 - High doses to tumor
 - Rapid drop-off of dose to normal tissues
 - Fractionated
 - Biological benefits
 - Fewer fractions (2-4)

SRT for Feline Acromegaly

- Disease background
- Signalment
- Clinical signs
- Diagnosis
- Prognosis
- Treatment options
- Results at CSU

Feline Acromegaly

- Rare/Uncommon/Common?
- Pituitary Tumor
 - Adenoma
 - Somatotrope cells
 - Secretes GH
 - Usually visible on CT or MRI
 - Acidophil hyperplasia?

Growth Hormone

- GH = somatotropin
- Pulsatile secretion from pituitary
- Induces IGF-1 production by the liver

Feline Acromegaly

- Anabolic effects
 - Growth of bone, cartilage, soft tissues and organs
- Catabolic effects
 - GH antagonises insulin at post-receptor level
 - Insulin-resistant diabetes mellitus
Feline Acromegaly

• Older male, DSH or DLH cats
 • Median age = 9 years
 • Mean age = 10 years

Feline Acromegaly

• Clinical Signs
 • PUPD
 • Polyphagia
 • Insulin resistant DM
 • Insulin dose > 2 U/kg
 • Often 12-15 units BID
 • Sometimes > 20 units BID
 • Weight gain
 • Despite unregulated diabetes

Feline Acromegaly

• Clinical Signs
 • Enlarged facial features
 • Enlarged feet
 • Abdominal distension
 • Altered dental spacing
 • Distorted joints
 • Thickened soft tissues around airway
 • Stridor/snoring
 • Very common

Feline Acromegaly

• Clinical Signs
 • Hypertension
 • Myocardial disease
 • Neurological signs uncommon
 • Mental dullness

Feline Acromegaly

• Clinical Pathology
 • Hyperglycemia
 • Glucosuria
 • Elevated cholesterol
 • Elevated phosphorus
 • Erythrocytosis
 • Proteinuria
 • Glomerulonephropathy

Feline Acromegaly

• Diagnosis
 • History/clinical signs/PE
 • Look at an old photo!
A disease of Photoshop®?

Feline Acromegaly

• Diagnosis
 • GH levels
 • Not currently available
 • (Very helpful in diagnosis)
 • IGF-1
 • Readily available

Feline Acromegaly

• Diagnosis
 • CT or MRI
 • MRI more sensitive
 • Negative study
 • Small mass
 • Hyperplasia?

Feline Acromegaly

• Prognosis
 • Guarded to good in short-term
 • Poor for long term
 • Typically survive 1.5-3 yr
 • Neurological signs uncommon

Feline Acromegaly

• Cause of death
 • Renal failure
 • Cardiac failure
 • Hypoglycemic coma

Acromegaly Therapy

• Goals (Humans)
 • Tumor removal
 • Relief of symptoms
 • Reduction of systemic complications
 • Control mass effect of the tumor

• Multidisciplinary approach
Acromegaly Therapy

• Goals (Feline)
 • Relief of signs
 • Reduce systemic complications
 • Quality of life
 • Patient and owner

Acromegaly Therapy

• Surgery
 • Primary therapy in humans
 • Rarely performed in cats in the US

• Medical Therapy
 • Commonly used in humans
 • Poor results in cats so far

Stereotactic Radiation Therapy (SRT)

• Used in humans as adjunct therapy
• Recent experiences in cats

SRT Study at CSU

• Optimise SRT protocol for feline acromegaly
• Monitor IGF-1 (and GH) levels
• Follow endocrine function after SRT
• Evidence of hypopituitarism?
• Monitor insulin requirements

SRT Study

• Planning CT on day 0
• Stereotactic Radiation Therapy
 • Trilogy™ linear accelerator
 • 2 fractions: days 1 and 3
 • 4 fractions: days 1, 2, 3, and 4
• Monitoring:
 • IGF-1
 • GH
 • eACTH
 • ACTH stim testing
 • Thyroid panels
 • Insulin dose

SRT Set-Up
Results: Cats
- 7 cats enrolled over one year for the initial study
- 10 more cats treated after study
- All had typical acromegaly signs
- Longest follow-up: 30 months

Results: CT Scan
- Pituitary mass detected in 5 of 7 study cats
- No mass detected in cats 3 and 7
- Owners elected SRT

Results: SRT
- Cats 1-3: 2 fractions
 - 36 Gy (2 cats)
 - 28 Gy (1 cat)
- Cats 4-7: 4 fractions
 - 28 Gy
- Cats 8-17: 3 or 4 fractions
 - 15 - 20 minute duration of anesthesia per fraction

Results: Adverse Effects
- 15 of 17 cats had no adverse effects
- 2 cats mentally dull immediately post SRT
 - Responded to short course of prednisolone
 - Returned to pre SRT status
- All owners reported steady improvements in attitude and energy level
- No delayed effects seen so far

Results: Survival
- 4 of initial 7 cats euthanised
 - Cat 1
 - 6.5 months
 - Episodes of severe hypoglycemia with seizures
 - Renal disease
 - Cat 2
 - 6.5 months
 - Intussusception and intestinal leiomyoma
 - Cat 3
 - 5.5 months
 - CKD
 - Cat 4
 - 19 months
 - CKD
 - Diabetic remission at 17 weeks
Results: Insulin Requirements

- All study cats (7)
 - Initially 1.9 - 3.2 U/kg per dose
 - 3 detemir, 3 glargine, 1 PZI
- All cats
 - Insulin dose < 6 U at 8 wk - 7m
- For cats alive at 1 yr
 - Insulin dose < 0.5 U/kg at 1 year
- 3 cats
 - Diabetic remission
 - 17 wk, 19m, 19m

Results: IGF-1

- All cats
 - IGF-1 fell slowly over time
 - Never into normal range
 - Surviving cats followed > 1yr
 - IGF-1 increased after initial decline

Results: GH

- Available for 1st year of study (7 cats)
 - Increased pre-SRT in all cats
 - > 10 ng/ml
 - In all surviving cats
 - < 10 ng/ml by 30 weeks

Results: Long-Term

- Cat 5
 - Still in diabetic remission at 30 months post-SRT
- Cat 6
 - Still in diabetic remission at 30 months
 - On levothyroxine
- Cat 7
 - On 2.5 U detemir q 24 hr at 17 months post-SRT
 - On levothyroxine

Results: Additional Cats

- 10 additional cats treated
 - 2 lost to follow-up
 - 1 in diabetic remission at 2.5 months post-SRT
 - 6 on < 6U insulin
 - 1 not responding by 9 m post-SRT

Results: Endocrine Testing

- Diabetes insipidus
 - No cats
- Hypoadrenocorticism
 - No cats
- Hypothyroidism
 - 2 cats
 - At 6 months post-SRT
 - Responded to supplementation
Results: Physical Changes

SRT Conclusions

- Stereotactic Radiation Therapy: 1 year+ findings for feline acromegaly
 - Safe and well-tolerated
 - Few anesthetic events
 - No significant adverse effects
 - Convenient
 - Can be completed within one week
 - Avoids extensive hospitalisation

SRT Conclusions

- Insulin Resistance
 - Improves within 12-16 weeks
 - Diabetic remission possible
 - Even after > 18 m

Disadvantages of SRT?

- Availability
- Cost (disadvantage of all forms of RT)

SRT for Canine PDH?

- Yes!
- One dog successfully treated
- Ongoing study at CSU
 - See me for details!
 - kathylunn@me.com