The electroencephalogram (EEG) was first described by Berger (1929). This discovery led to the identification of brain waves, which have since been divided into five major categories: Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30 Hz), and Gamma (30-100 Hz). This phenomenon has become known as Alpha blocking (Figures 1 and 2), a term coined by Kraepelin (1919) to describe the cessation of brain wave activity in specific frequency bands. The Theta brain wave, with its frequency ranging from 4 to 8 Hz, is particularly prominent during periods of relaxation and sleep. The Alpha brain wave, with its frequency ranging from 8 to 12 Hz, is typically observed during states of relaxation and closed eyes. The Beta brain wave, with its frequency ranging from 12 to 30 Hz, is associated with alertness and active mental processes.

The Alpha brain wave is important in the context of visual training. With an increase in Alpha brain activity, there can be an improvement in visual acuity, color vision, contrast sensitivity, and overall visual performance. This relationship is further supported by the findings of many studies, including those by Willeford et al. (2013), who reported a significant increase in visual acuity and contrast sensitivity following Alpha training.

REFERENCES

Mulholland and Peper, 1971, Mulholland, 1974, Jones and open. This phenomenon has become known as Alpha blocking (Figures 1 and 2), a term coined by Kraepelin (1919) to describe the cessation of brain wave activity in specific frequency bands. The Theta brain wave, with its frequency ranging from 4 to 8 Hz, is particularly prominent during periods of relaxation and sleep. The Alpha brain wave, with its frequency ranging from 8 to 12 Hz, is typically observed during states of relaxation and closed eyes. The Beta brain wave, with its frequency ranging from 12 to 30 Hz, is associated with alertness and active mental processes.

METHOD

HYOTHESIS

The study that is reported is a pilot study where asymptomatic participants were trained in Alphafocal (BFM) and compared to baseline readings. The mean values of the obtained measurements were statistically compared using SPSS (version 22) software. The significance level for all statistical tests was set at p < 0.05.

RESULTS

Table 1

<table>
<thead>
<tr>
<th>Alpha Brain Waves</th>
<th>Performance and Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>Improved memory and attention</td>
</tr>
<tr>
<td>Beta</td>
<td>Improved concentration and focus</td>
</tr>
<tr>
<td>Alpha</td>
<td>Improved creativity and problem-solving</td>
</tr>
<tr>
<td>Gamma</td>
<td>Improved spatial awareness and visualization</td>
</tr>
</tbody>
</table>

Figure 1

EYES CLOSED

Figure 2

EYES OPEN

Figure 3

ALPHA RHYTHM VERSUS BRIGHTNESS

Figure 4

BASELINE EEG

Figure 5

INCREASED ALPHA

Figure 6

OUTSTANDING OUTCOMES

Table 2

<table>
<thead>
<tr>
<th>Alpha Brain Waves</th>
<th>Performance and Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>Improved memory and attention</td>
</tr>
<tr>
<td>Beta</td>
<td>Improved concentration and focus</td>
</tr>
<tr>
<td>Alpha</td>
<td>Improved creativity and problem-solving</td>
</tr>
<tr>
<td>Gamma</td>
<td>Improved spatial awareness and visualization</td>
</tr>
</tbody>
</table>

Figure 7

Theta brain waves approximately equal in amplitude. Figure 8 shows the baseline EEG, with Alpha and Beta brain waves nearly equal in frequency.

Figure 8

Theta brain waves are approximately equal in amplitude.

Figure 9

Alpha and Beta brain waves are nearly equal in frequency.

Figure 10

The ABW can produce a general relaxation response, as well as a number of other physiological and perceptual changes (see Tables 1 and 2).

REFERENCES

Berger, 1929, which subsequently replicated dozens of times, the ABW is a prominent phenomenon in the field of microsurgery.

METHOD

HYOTHESIS

The study that is reported is a pilot study where asymptomatic participants were trained in Alphafocal (BFM) and compared to baseline readings. The mean values of the obtained measurements were statistically compared using SPSS (version 22) software. The significance level for all statistical tests was set at p < 0.05.

RESULTS

Table 1

<table>
<thead>
<tr>
<th>Alpha Brain Waves</th>
<th>Performance and Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>Improved memory and attention</td>
</tr>
<tr>
<td>Beta</td>
<td>Improved concentration and focus</td>
</tr>
<tr>
<td>Alpha</td>
<td>Improved creativity and problem-solving</td>
</tr>
<tr>
<td>Gamma</td>
<td>Improved spatial awareness and visualization</td>
</tr>
</tbody>
</table>

Figure 1

EYES CLOSED

Figure 2

EYES OPEN

Figure 3

ALPHA RHYTHM VERSUS BRIGHTNESS

Figure 4

BASELINE EEG

Figure 5

INCREASED ALPHA

Figure 6

OUTSTANDING OUTCOMES

Table 2

<table>
<thead>
<tr>
<th>Alpha Brain Waves</th>
<th>Performance and Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>Improved memory and attention</td>
</tr>
<tr>
<td>Beta</td>
<td>Improved concentration and focus</td>
</tr>
<tr>
<td>Alpha</td>
<td>Improved creativity and problem-solving</td>
</tr>
<tr>
<td>Gamma</td>
<td>Improved spatial awareness and visualization</td>
</tr>
</tbody>
</table>

Figure 7

Theta brain waves approximately equal in amplitude. Figure 8 shows the baseline EEG, with Alpha and Beta brain waves nearly equal in frequency.

Figure 8

Theta brain waves are approximately equal in amplitude.

Figure 9

Alpha and Beta brain waves are nearly equal in frequency.

Figure 10

The ABW can produce a general relaxation response, as well as a number of other physiological and perceptual changes (see Tables 1 and 2).

REFERENCES

Berger, 1929, which subsequently replicated dozens of times, the ABW is a prominent phenomenon in the field of microsurgery.

METHOD

HYOTHESIS

The study that is reported is a pilot study where asymptomatic participants were trained in Alphafocal (BFM) and compared to baseline readings. The mean values of the obtained measurements were statistically compared using SPSS (version 22) software. The significance level for all statistical tests was set at p < 0.05.

RESULTS

Table 1

<table>
<thead>
<tr>
<th>Alpha Brain Waves</th>
<th>Performance and Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>Improved memory and attention</td>
</tr>
<tr>
<td>Beta</td>
<td>Improved concentration and focus</td>
</tr>
<tr>
<td>Alpha</td>
<td>Improved creativity and problem-solving</td>
</tr>
<tr>
<td>Gamma</td>
<td>Improved spatial awareness and visualization</td>
</tr>
</tbody>
</table>

Figure 1

EYES CLOSED

Figure 2

EYES OPEN

Figure 3

ALPHA RHYTHM VERSUS BRIGHTNESS

Figure 4

BASELINE EEG

Figure 5

INCREASED ALPHA

Figure 6

OUTSTANDING OUTCOMES

Table 2

<table>
<thead>
<tr>
<th>Alpha Brain Waves</th>
<th>Performance and Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>Improved memory and attention</td>
</tr>
<tr>
<td>Beta</td>
<td>Improved concentration and focus</td>
</tr>
<tr>
<td>Alpha</td>
<td>Improved creativity and problem-solving</td>
</tr>
<tr>
<td>Gamma</td>
<td>Improved spatial awareness and visualization</td>
</tr>
</tbody>
</table>

Figure 7

Theta brain waves approximately equal in amplitude. Figure 8 shows the baseline EEG, with Alpha and Beta brain waves nearly equal in frequency.

Figure 8

Theta brain waves are approximately equal in amplitude.

Figure 9

Alpha and Beta brain waves are nearly equal in frequency.

Figure 10

The ABW can produce a general relaxation response, as well as a number of other physiological and perceptual changes (see Tables 1 and 2).

REFERENCES

Berger, 1929, which subsequently replicated dozens of times, the ABW is a prominent phenomenon in the field of microsurgery.