BOVINE VIRAL DIARRHOEA
and
BORDER DISEASE VIRUS INFECTIONS (BVDV, BDV)

<table>
<thead>
<tr>
<th>ANIMAL GROUP AFFECTED</th>
<th>TRANSMISSION</th>
<th>CLINICAL SIGNS</th>
<th>FATAL DISEASE ?</th>
<th>TREATMENT & CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervidae</td>
<td>Virus shed in</td>
<td>Abortion, foetal malformations,</td>
<td>Rare (haemorrhagic</td>
<td>In houses</td>
</tr>
<tr>
<td>Giraffidae</td>
<td>secretions,</td>
<td>stillbirth, weakened neonates,</td>
<td>syndrome; mucosal disease,</td>
<td></td>
</tr>
<tr>
<td>Antilocapridae</td>
<td>aborted foetuses,</td>
<td>diarrhoea, haemorrhagic syndrome; hairy</td>
<td>mostly subclinical</td>
<td></td>
</tr>
<tr>
<td>Bovidae</td>
<td>foetal membranes,</td>
<td>shaker (BDV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camelidae</td>
<td>uterocervical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suidae</td>
<td>fluids, mechanical,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vectors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fact sheet compiled by
Kai Frölich, Institute for Zoo and Wildlife Research, Berlin, Germany

Last update
February 2002

Fact sheet reviewed by
H.-J. Thiel, Institut für Virologie, Giessen, Germany
W. Jakob, Institute for Zoo and Wildlife Research, Berlin, Germany

Susceptible animal groups
Serologic surveys and in some cases also virus isolation in free-ranging and captive ungulates demonstrated infection with BVDV or related pestiviruses in more than 50 species in North America, Africa, Australia and Europe.

Causative organism
The Bovine viral diarrhoea virus (BVDV) is a positive-sense, single-stranded RNA virus. The virions are spherical structures 50-60 nm in diameter. Infectivity of BVDV is lost at elevated temperatures and by treatment with detergents and lipid solvents. The virus is able to withstand a relatively broad pH range. BVDV and Border disease virus (BDV) exist in two biotypes: noncytopathic (ncp) and cytopathic (cp) for cultured cells. Most isolates are ncp, but cp viruses are recovered from animals with a specific BVDV-related affliction called mucosal disease.

Zoonotic potential
None.

Distribution
Cervidae, Giraffidae, Antilocapridae, Bovidae, Camelidae, Suidae.

Transmission
The principal reservoirs of BVDV and BDV are persistently infected (PI) cattle and sheep by virtue of high titer of virus shed in their secretions. Until now it is not known whether persistent infections occur in wild ungulates. Transmission of BVDV/BDV by acutely infected animals is not as efficient. Virus is present in aborted foetuses, foetal membranes, and uterocervical fluids. Transmission by mechanical and insect vectors has been reported. The role of pestiviruses in wild ungulate populations and the interactions between wild ungulates and domestic livestock are still not well understood. Suspected sources of the virus from wild animals include direct contact with infected livestock, shared feed and watering areas, or the presence of pestivirus-infected individuals within the populations. However, contact with livestock is not always necessary.

Incubation period
2-14 days.

Clinical symptoms
The primary clinical signs are haemorrhagic mucosal inflammation and general physical impairment. Some isolates may cause the haemorrhagic syndrome. For acute infections clinical symptoms may be mild. Mucosal disease is inevitably fatal. Transplacental infection can lead to abortion, foetal malformations and development of persistently viremic ungulates depending on the state of development of the fetus and the biotype (cytopathogenic or noncytopathogenic) of the virus.
Post mortem findings
Lesions included erosion and ulceration of the oral mucosa, haemorrhagic enteritis and general physical impairment. Pyrexia, anorexia, salivation, and nasal discharge have been described; some animals with MD had skin lesions and may be lame due to interdigital ulceration and inflammation of coronary bands.

Diagnosis
Antibodies: ELISA, NT; Virus: FA, IFA, RT-PCR.

Material required for laboratory analysis
Virus should be isolated from buffy-coat cells or nasal secretions from acutely infected or suspected PI animals. Samples of thymus, spleen, lung, liver, mesenteric lymph nodes, tonsils, intestines, and kidney should be collected at necropsy for virus culture or PCR. Viral antigens and nucleic acids can be detected in acetone-fixed frozen tissue sections or impression smears of respiratory epithelium by different techniques.

OIE Reference Laboratories

- **Dr D. Deregt** (1)
 Canadian Food Inspection Agency, Animal Diseases Research Institute
 P.O. Box 640, Lethbridge, Alberta T1J 3Z4
 CANADA
 Tel: (1.403) 382.55.00 Fax: (1.403) 381.12.02
 Email: deregtd@inspection.gc.ca

- **Dr T.W. Drew**
 Head of Virology Department, VLA Weybridge
 Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB
 UNITED KINGDOM
 Tel: (44.1932) 35.76.37 Fax: (44.1932) 35.72.39
 Email: t.w.drew@vla.defra.gsi.gov.uk

- **Dr Peter Kirkland**
 Elizabeth Macarthur Agriculture Institute (EMAI), Virology Laboratory
 PMB 8, Camden NSW 2570
 AUSTRALIA
 Tel: (61-2) 46.40.63.31 Fax: (61-2) 46.40.64.29
 Email: peter.kirkland@dpi.nsw.gov.au

Relevant diagnostic laboratories

- Prof. H.-J. Thiel, Justus-Liebig-Universität Gießen, Frankfurter Str. 107, 35392 Gießen, Germany
- Dr. M. Hofmann, Institut für Viruserkrankungen und Immunprophylaxe, CH- 3147 Mittelhäusern, Switzerland
- Dr. K. Frölich, Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany

Treatment

Prevention and control in zoos
Control of BVD and BD in captive animals requires separation of wild animals from livestock and avoiding contact with contaminated biologicals. New arrivals should be quarantined. Where quarantine and separation from livestock are not feasible, and there is concern about BVDV infection, animals may be vaccinated and boosted with inactivated BVDV vaccines to prevent severe disease due to acute infection. Managers should be cognizant that vaccination has not been shown to protect against disease as well as foetal infections if dams are exposed to antigenically very different pestiviruses. Thus, there is a potential for production of PIs.

Suggested disinfectant for housing facilities

Notification

Guarantees required under EU Legislation

Guarantees required by EAZA Zoos

Measures required under the Animal Disease Surveillance Plan

Measures required for introducing animals from non-approved sources

Measures to be taken in case of disease outbreak or positive laboratory findings
Conditions for restoring disease-free status after an outbreak

Contacts for further information
Dr. K. Frölich, Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
Prof. H.-J. Thiel, Institut für Virologie, Fachbereich Veterinärmedizin, Frankfurterstraße 107, 35392 Giessen, Germany
Dr. M. Hofmann, Institut für Viruserkranzungen und Immunprophylaxe, CH- 3147 Mittelhäusern, Switzerland

References