The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes

Gregory D. Myer, Kevin R. Ford, Mark V. Paterno, Todd G. Nick and Timothy E. Hewett

Am. J. Sports Med. 2008; 36; 1073 originally published online Mar 7, 2008;
DOI: 10.1177/0363546507313572

The online version of this article can be found at:
http://ajs.sagepub.com/cgi/content/abstract/36/6/1073

Published by:
SAGE Publications
http://www.sagepublications.com

On behalf of:
American Orthopaedic Society for Sports Medicine

Additional services and information for American Journal of Sports Medicine can be found at:

Email Alerts: http://ajs.sagepub.com/cgi/alerts

Subscriptions: http://ajs.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations (this article cites 73 articles hosted on the SAGE Journals Online and HighWire Press platforms):
http://ajs.sagepub.com/cgi/content/abstract/36/6/1073#BIBL
The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes

Gregory D. Myer,*†‡§ MS, CSCS, Kevin R. Ford,†‡|| MS, Mark V. Paterno,†‡§ PT, MS, SCS, ATC, Todd G. Nick,†¶ PhD, and Timothy E. Hewett,†‡§# PhD, FACSM

From †Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, ‡Sports Medicine Biodynamics Center and Human Performance Laboratory, Cincinnati, Ohio, §Rocky Mountain University of Health Professions, Provo, Utah, ||Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, #Center for Epidemiology and Biostatistics, Cincinnati, Ohio, and the Department of Pediatrics, Orthopaedic Surgery, College of Medicine, and the Departments of Biomedical Engineering and Rehabilitation Sciences, University of Cincinnati, Cincinnati, Ohio

Background: Women who participate in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than men. Prior investigations indicate that greater knee laxity and increased generalized joint laxity are more prevalent in adolescent girls than in their male counterparts. Uhorchak et al reported that female athletes with greater passive joint restraint, indicated by generalized joint laxity greater than one standard deviation of the mean, had increased risk of ACL injury. Similarly, Ramesh and colleagues found that ACL injury was more frequent in those patients with greater overall joint laxity, specifically those with increased knee joint laxity.

Purpose: To prospectively determine if female athletes with decreased passive knee joint restraint (greater joint laxity) and greater side-to-side differences in knee laxity would be at increased risk of anterior cruciate ligament injury.

Study Design: Case control study; Level of evidence, 3.

Methods: From 1558 female soccer and basketball players who were prospectively screened, 19 went on to tear their anterior cruciate ligaments. Four height- and mass-matched control subjects were selected from the uninjured screened athletes for comparison with each of the 19 injured subjects, making a total of 95 subjects (19 injured; 76 uninjured). Generalized joint-laxity tests and anterior-posterior tibiofemoral translation were quantified using the CompuKT knee arthrometer. A multivariable logistic regression model was constructed to determine predictors of anterior cruciate ligament injury status from recorded laxity measures.

Results: A multivariable logistic regression model (chi-square = 18.6; P = .002) used the independent variables laxity measures of knee hyperextension (P = .02), wrist and thumb to forearm opposition (P = .80), fifth-finger hyperextension > 90° (P = .71), side-to-side differences in anterior-posterior tibiofemoral translation (P = .002), and prior knee injury (P = .22) to predict anterior cruciate ligament–injury status. The validated C statistic, or validated area under the receiver operating characteristic curve, was 0.72. For every 1.3-mm increase in side-to-side differences in anterior-posterior knee displacement, the odds of anterior cruciate ligament–injured status increased 4-fold (95% confidence interval, 1.68-9.69). A positive measure of knee hyperextension increased the odds of anterior cruciate ligament–injured status 5-fold (95% confidence interval, 1.24-18.44).

Conclusion: The current results indicate that increased knee-laxity measures may contribute to increased risk of anterior cruciate ligament injury. The methods to quantify knee joint laxity in this report may be used in conjunction with measures of neuromuscular control of the knee joint to identify high-risk female athletes with high accuracy. Once high-risk female athletes are identified, they may be targeted to the appropriate interventions to reduce injury risk.

Keywords: neuromuscular control; dynamic valgus; knee joint load; ACL injury; injury prevention; gender differences

*Address correspondence to Gregory D. Myer, MS, CSCS, Cincinnati Children’s Hospital, 3333 Burnet Avenue, MLC 10001, Cincinnati, OH 45229 (e-mail: greg.myer@chmcc.org).

No potential conflict of interest declared.

The American Journal of Sports Medicine, Vol. 36, No. 6
DOI: 10.1177/0363546507313572
© 2008 American Orthopaedic Society for Sports Medicine

Women who participate in high-risk sports suffer ACL injury at a 4- to 6-fold greater rate than men. Prior investigations indicate that greater knee laxity and increased generalized joint laxity are more prevalent in adolescent girls than in their male counterparts. Uhorchak et al reported that female athletes with greater passive joint restraint, indicated by generalized joint laxity greater than one standard deviation of the mean, had increased risk of ACL injury. Similarly, Ramesh and colleagues found that ACL injury was more frequent in those patients with greater overall joint laxity, specifically those with increased knee joint laxity.
Dynamic knee stability is affected by both passive (ligamentous) and active (neuromuscular) joint restraints. Female athletes at a high risk of ACL injury exhibit increased knee abduction motion and torque during dynamic landing tasks, which may relate to decreased dynamic knee stability and neuromuscular control of the knee joint. In addition, female athletes with side-to-side differences in knee abduction measures also have increased risk of ACL injury. However, it is not yet known which passive and active measures are most contributory to dynamic knee stability and most predictive of increased ACL injury risk. Excessive passive knee laxity may result in decreased dynamic knee stability during athletic maneuvers and may be related to previously identified ACL injury risk factors. Most knee ligamentous injuries in women’s sports occur by noncontact mechanisms (deceleration, lateral pivoting, or landing). Increased risk of ACL injury may occur in the absence of sufficiently taut ligaments and tendons that traverse and surround the lower extremity to stabilize the knee joint and absorb ground-reaction forces. Anterior cruciate ligament–injury risk factors are likely multifactorial; however, passive joint laxity may be an important contributor to dynamic knee stability and risk of ACL injury.

While strong evidence exists to show that there is a gender difference in rates of ACL injury in postpubertal athletes, there is minimal evidence to suggest that this trend is found in prepubescent athletes. After the onset of puberty, both girls and boys experience rapid increases in height and mass and changes in hormonal concentrations. Coinciding with these changes are gender-specific changes in general ligamentous and knee ligament laxity. Female and male generalized joint-laxity patterns diverge during and after puberty, as boys demonstrate a decrease in joint flexibility and ligament laxity with chronological age and maturational stage, while girls demonstrate an increase. In addition to gender differences in generalized joint laxity after puberty, anterior-posterior (AP) knee laxity also changes. Boys demonstrate a decrease in AP knee laxity, unlike their female counterparts. The joint-laxity differences in adolescent male and female athletes previously reported in the literature are likely a result of the changes that accompany puberty. These developmental differences may also contribute to the postpubertal gender gap in decreased dynamic knee stability and increased ACL injury rate. There is a trend toward an increase in ACL injuries during the preovulatory phase of the menstrual cycle in female athletes. Therefore, fluctuation of female hormones may be involved in increased female ACL injury rates. Specifically, fluctuations in daily hormone levels during the menstrual cycle may influence AP knee laxity. Hence, growth and development and hormonal fluctuations after puberty may be contributors to alterations in joint laxity and increased ACL injury risk in female athletes.

The purpose of the current study was to prospectively determine if female athletes with decreased passive knee joint restraint (greater joint laxity) and greater side-to-side differences in knee laxity would be at increased risk of ACL injury. The prospective coupled biomechanical-epidemiological cohort design of this study allowed us to directly test the hypothesis that greater passive joint laxity and greater side-to-side differences in knee stability would predict ACL injury risk in high-risk female athletes.

MATERIALS AND METHODS

Subjects

The participants included in the present study represent a subset of a cohort of subjects who were prospectively screened (N = 1558) before sports participation during the period from 2002 until 2006. Nineteen female athletes went on to have ACL injuries (15 during soccer and 4 during basketball play). Anterior cruciate ligament ruptures were confirmed by arthroscopic surgery (n = 18) or magnetic resonance imaging (n = 1). Prior published critiques of similar epidemiological designs to determine risk factors for ACL injury have expressed concern about the confounding effects of sport, height, and mass. To better control for the confounding variance between individual sport teams and individual anthropometrics, the current investigation used matched investigational subjects with 4 teammates of the nearest height and mass to serve as uninjured control subjects. The nested case control study design yielded 95 female high school and collegiate soccer and basketball players who were all prospectively screened for laxity measures before their recorded ACL injury. The ACL-injured population was similar in age (16.3 ± 1.7 years vs. 15.6 ± 1.4 years, P = .08), height (166.4 ± 6.8 cm vs. 165.5 ± 6.2 cm, P = .59), and mass (60.3 ± 7.3 kg vs. 59.1 ± 7.8 kg, P = .54) to uninjured teammates matched for control comparisons.

Informed written consent was obtained from all subjects and their parents and approved by the Institutional Review Board. After the informed consent was obtained, height (in centimeters) and mass (in kilograms) were measured and recorded. A form that included the question “Have you ever injured your knee while playing a sport?” was used to determine history of knee injury. General ligamentous and AP knee–laxity measures were recorded during the laboratory evaluation during each athlete’s visit for their prospective screening.

Test Protocol

Each subject was tested for generalized joint laxity using tests depicted in Figures 1 through 4. Generalized joint-laxity tests consisted of fifth-finger hyperextension >90°, elbow hyperextension beyond neutral, wrist and thumb to forearm opposition, and knee hyperextension beyond neutral. Anterior-posterior tibiofemoral translation was quantified using the CompuKT knee arthrometer (Medmetric Corp, San Diego, Calif) to measure total AP displacement of the tibia relative to the secured femur. During the measurement, each leg was placed on the adjustable thigh support with the knee stabilized at 20° to 35° of knee flexion. The arthrometer was secured to the shank such that the patellar sensor pad rested on the patella with the knee joint line reference mark on the CompuKT aligned with the subject’s joint line. The ankle and foot were stabilized to limit leg rotation. The tester provided a posterior and anterior (±134 N) pressure on an axis perpendicular to the tibia. Total displacement
Side-to-side differences (per 1.3-mm difference; represents the 25th vs 75th interquartile range coefficients) in knee laxity were calculated from the absolute difference in total AP tibial translation between the dominant and nondominant knee. The dominant leg was determined for each subject by asking which leg they would use to kick a ball as far as possible.²¹,²⁷ CompuKT measurements of anterior knee laxity demonstrated reliability with intraclass correlation coefficients (ICCs) between testers that ranged from 0.81 to 0.86 and within-tester correlations that ranged from 0.92 to 0.95.⁵⁷ All testing for this study was performed by 2 investigators who demonstrated good to excellent intrarater reliability for CompuKT and joint-laxity scores, respectively, during pilot testing (ICC range, 0.891-0.972). In addition, general joint-laxity classifications, similar to those used in the current investigation, also demonstrate good to excellent interrater reliability.⁷

Statistical Analysis

A multivariable logistic regression model was constructed to determine predictors of ACL injury status from the laxity measures taken at the fifth metacarpal, elbow, thumb, knee, and tibiofemoral total translation, including from side-to-side differences in AP tibiofemoral translation. Previous knee injury was also included into the model for adjustment purposes, as it is a potential confounding effect on AP knee–laxity measures. One indicator variable was created for each dichotomous independent variable (fifth metacarpal hyperextension, elbow hyperextension, thumb to forearm, and knee hyperextension). A “1” was used to indicate the presence of positive laxity, and “0” indicated negative laxity.

In addition to the multivariable model, individual simple binary logistic regression models were constructed (1) to select variables for the final prediction model, and (2) to compare unadjusted models to the adjusted models to determine
potential confounding effects. If the \(P \) value of the chi-square statistics for a specific variable was greater than a liberal value of .50, then the variable was eliminated. Variables that we considered to have high clinical value were included in the model regardless of significance. The multivariable model is considered the primary statistical analysis because it provides (1) adjusted effects controlling for the other predictors in the model, (2) removes the effects of confounding, and (3) provides accurate estimates of model accuracy using the C statistic, which is equivalent to the area under the receiver operating characteristic (ROC) curve. Since overfitting remained likely, given the ratio of the number of events (19 knee injuries) to degrees of freedom (\(df = 5 \)), we validated the C statistic using 200 bootstrap samples. Each of the 200 bootstrap samples had 95 subjects, and these samples were only used to validate the C statistic of the regression model.

This is referred to as internal validation and involves fitting and validating the model by carefully using a series of subjects of the same sample size as the study sample. By doing this, one estimates the "likely performance of the final model on new subjects, which, after all, is often of most interest."29 The validated C statistic provides an estimate that subtracts the average amount of bias from the originally estimated statistics. A perfect model would have a validated C statistic of 1.0. A C statistic of 0.80 or above has excellent utility, and between 0.70 and 0.80 has acceptable utility in predicting the outcomes of individual patients.37

RESULTS

Table 1 presents the frequency distribution for positive laxity measures, and Table 2 presents the means and standard deviations (SDs) for AP knee motion measured on a CompuKT (Medmetric Corp) arthrometer. In the ACL-injured group, 7 of 19 (37%) reported a prior knee injury on their questionnaire. In the control group, 22 of the 76 (29%) athletes reported a history of knee injury.

Results of simple binary logistic regression analyses examining prediction of ACL injury from the independent variables are presented in Table 3 under the univariable, or unadjusted, results. Side-to-side differences in knee laxity showed a simple (unadjusted) effect on ACL injury. Subjects with side-to-side differences (per 1.3-mm difference, represents the 25th vs 75th interquartile range coefficients) had more than a 3-fold greater odds of ACL injury than subjects without differences (95% confidence interval [CI], 1.47-7.08). Unadjusted odds ratios (ORs) for the other variables ranged from 0.57 to 2.34 and did not significantly differ from the null hypothesis of an OR of 1.0.

TABLE 1

Frequency Distribution for Positive Laxity Measures and Self-Reported Prior Knee Injury

<table>
<thead>
<tr>
<th>Positive Laxity Measure</th>
<th>Controls ((n = 76))</th>
<th>Controls (%)</th>
<th>Injured ((n = 19))</th>
<th>Injured (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifth metacarpal</td>
<td>18</td>
<td>24</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>Elbow</td>
<td>29</td>
<td>38</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Thumb</td>
<td>42</td>
<td>55</td>
<td>13</td>
<td>68</td>
</tr>
<tr>
<td>Knee</td>
<td>18</td>
<td>24</td>
<td>8</td>
<td>42</td>
</tr>
</tbody>
</table>

TABLE 2

Means and Standard Deviations for Anterior-Posterior Knee Motion Measured on CompuKT Arthometer

<table>
<thead>
<tr>
<th>Knee Arthrometer Measurement</th>
<th>Dom ((n = 76))</th>
<th>Nondom ((n = 76))</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.4</td>
<td>8.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Injured</td>
<td>9.4</td>
<td>9.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

© 2008 American Orthopaedic Society for Sports Medicine. All rights reserved. Not for commercial use or unauthorized distribution.
TABLE 3
Results of Univariate and Multivariate Analyses

<table>
<thead>
<tr>
<th>Factor</th>
<th>Univariable OR (95% CI)</th>
<th>P Value</th>
<th>Multivariable OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side-to-side differences in knee laxity(^b)</td>
<td>3.23 (1.47-7.08)</td>
<td>.003</td>
<td>4.03 (1.68-9.69)</td>
<td>.002</td>
</tr>
<tr>
<td>Fifth-finger hyperextension >90°</td>
<td>1.49 (0.49-4.48)</td>
<td>.48</td>
<td>1.27 (0.36-4.48)</td>
<td>.71</td>
</tr>
<tr>
<td>Wrist and thumb to forearm opposition</td>
<td>1.75 (0.60-5.10)</td>
<td>.30</td>
<td>1.17 (0.35-4.00)</td>
<td>.80</td>
</tr>
<tr>
<td>Knee hyperextension beyond neutral</td>
<td>2.34 (0.82-6.72)</td>
<td>.11</td>
<td>4.78 (1.24-18.44)</td>
<td>.02</td>
</tr>
<tr>
<td>Previous knee injury</td>
<td>1.43 (0.50-4.12)</td>
<td>.51</td>
<td>2.27 (0.62-8.33)</td>
<td>.22</td>
</tr>
<tr>
<td>Elbow hyperextension beyond neutral</td>
<td>1.06 (0.37-2.99)</td>
<td>.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)OR, odds ratio; CI, confidence interval.
\(^b\)Per 1.3-mm difference; represents the 25th vs 75th interquartile range coefficients.

For the multivariable logistic regression model, the variable elbow hyperextension exceeded the minimum predetermined alpha cutoff and was eliminated. Prior knee injury exceeded the alpha cutoff but was considered clinically relevant and was included in the final model. The remaining 5 variables were then examined together in a multivariable model. The multivariable logistic regression model (chi-square, 18.6; \(P = .002\)) used the independent variables of laxity measures of knee hyperextension (\(P = .02\)), wrist and thumb-to-forearm opposition (\(P = .80\)), fifth-finger hyperextension >90° (\(P = .71\)), side-to-side differences in AP tibiofemoral translation (\(P = .002\)), and prior knee injury (\(P = .22\)) to predict ACL injury status. The model has a C statistic of 0.78. Upon validation of the model, the validated C statistic was 0.72. Therefore, the amount of overfitting, or overoptimism, was approximately 8%. For every 1.3-mm increase in side-to-side differences in AP knee displacement, the odds of ACL-injured status increased 4-fold (95% CI, 1.68-9.69). Interestingly, only 47% of the knees with increased AP knee displacement were the actual knees that went on to ACL-injured status. A positive measure of knee hyperextension increased the odds of ACL-injured status 5-fold (95% CI, 1.24-18.44). Prior knee injury did not change the odds of ACL-injured status (OR = 2.27; 95% CI, 0.62-8.33). Comparing the results of the adjusted multivariable models with the unadjusted univariable models indicated potential confounding effects, as regression coefficients changed at least 10%. Therefore, we recommend the estimates from the multivariable model be used because adjustment removes the effect of confounding.

DISCUSSION

The purpose of this study was to identify prospectively measured laxity measures related to the future risk of ACL injury in young, female athletes. A logistic regression model that included knee hyperextension and side-to-side differences in AP tibiofemoral translation was predictive of future ACL-injury status. These findings indicate that knee-laxity measures are potential measures that may be related to increased risk of ACL injury. Previous authors have reported that excessive generalized joint laxity and knee joint laxity also increased risk.\(^{15,74}\) In addition to knee hyperextension, side-to-side differences in measures of total AP tibiofemoral translation also increased the risk of ACL injury in the current study. Hewett and colleagues\(^{25}\) demonstrated that greater side-to-side differences and total dynamic coronal plane knee stability, evidenced by greater knee abduction moments and angles during a drop vertical jump, were related to increased risk of ACL injury. Collectively, these data indicate that joint stabilization provided by both active (dynamic knee alignment) and passive (ligament and tendon laxity) restraints is needed to provide protection against joint injury. Ligaments provide passive joint restraint, while musculotendinous units contribute to both passive and active joint restraint. Ligaments, joint capsules, joint surface contacts, passive or reflexive muscle tensions, and soft tissues all provide contributions to dynamic joint stability and end-range of motion.\(^{71}\)

Prior investigations indicate that greater knee laxity\(^{36,65,68}\) and increased generalized joint laxity\(^{16,29,44,62,66}\) are more prevalent in adolescent girls than in their male counterparts. UhoroChak et al\(^{74}\) reported that female athletes with greater passive joint restraint, indicated by generalized joint laxity greater than 1 standard deviation of the mean, had increased risk of ACL injury. Similarly, Ramesh and colleagues\(^{65}\) found ACL injury was more frequent in those patients with greater overall joint laxity and specifically those with increased knee joint laxity. In general, the passive joint restraints are not readily modifiable by nature. Flexibility training may offer some potential for modification to the passive restraints system. However, in 1997, Ford\(^{20}\) compared soccer athletes who had greater hamstring flexibility with those with average flexibility while performing a 180° cutting technique. Using a relatively small sample size (\(N = 19\)), the greater hamstring flexibility group revealed trends of decreased knee flexion angle (\(P = .070\)) at initial contact of the cut with concomitantly slower onset of hamstrings activation (\(P = .098\)). Increased flexibility may be related to a period of greater delay of effective cocontraction of the hamstring and quadriceps.\(^{20}\) The delay may predispose athletes with increased knee flexor laxity and knee hyperextension to perform dynamic sports-related activities with decreased sagittal plane knee flexion.\(^6\) Sagittal plane movement and load patterns during dynamic tasks may also contribute to the current gender disparity in noncontact ACL injury rates.\(^{11,46}\) Specifically, the relative decreases in knee flexion typically observed in female athletes at initial contact and throughout
stance during sports movements are proposed to elicit ante-
rrior tibial shear loads large enough to injure the ACL.17,47
Therefore, improved lower extremity movement strategies
during high-risk sports movements—in particular those that
address high-risk movements that contribute to decreased
gaital plane motion and increased coronal plane motions
and load—may reduce risk and possibly prevent ACL injuries
in female athletes.9,53,54 In addition, the current data may
indicate that increased joint mobility through active and pas-
sive flexibility training may be contraindicated for ACL
injury—prevention programs. Recent meta-analysis and
review of the literature also indicate that flexibility training
does not provide protective effects from injury, as has been
previously purported in the literature.73 The cumulative
evidence indicates that static stretching immediately prior to
play may decrease performance8,13,78 and does not reduce
injury risk in athletes.2,30,73,76

There is strong evidence that neuromuscular training
programs are effective for improving measures of perfor-
amance. The benefits of a program designed for performance
enhancement often include greater power, agility, and
speed.41,42,77 Female athletes may especially benefit from
multicomponent neuromuscular training, as they often
display decreased baseline levels of strength and power
compared with their male counterparts. Comprehensive
neuromuscular training programs designed for young
women may significantly increase power, strength, and
neuromuscular control and decrease gender differences in
these measures.42,43 Dynamic neuromuscular training can
reduce gender-related differences in force absorption,
active joint stabilization, muscle imbalances, and func-
tional biomechanics while increasing strength of bones, lig-
ament, and tendons.18,19,35,64 In addition, neuromuscular
training may increase active knee stability in the coronal
plane.35,52,54,55 Concomitantly, neuromuscular training also
likely reduces the risk of ACL injury in female athletes.51

Myer et al attempted to address the prevention of ACL
injuries by examining the effects of well-established training
strategies on lower limb mechanical parameters that predict
ACL injury risk.5,51 Specifically, they evaluated the most
effective and efficient means of increasing dynamic knee sta-
bility in female athletes.51 A linear regression analysis was
employed to determine the potential association between the
pretest measures of coronal-plane knee laxity and change in
this variable with training. In the trained group, pretest coro-
nal-plane knee laxity predicted 40% of the variance in the
reduction of coronal-plane knee laxity measured after train-
ing. In contrast, the control group showed no similar causal
relationship between pretest knee abduction measures and
change in posttest measures.51 This analysis indicated that
athletes with normal levels of coronal plane knee stability
will have little if any benefit from targeted neuromuscular
training. However, athletes who demonstrate decreased lev-
els of dynamic knee stability appear to have a greater poten-
tial to change their outcome. This association between
decreased symptomatic and decreased effect of intervention
has been previously demonstrated59 but is often ignored in clinical
investigations.28

There is limited potential to modify the passive knee-
laxity measures obtained in the current study. However,
passive knee laxity may be used in combination with
dynamic coronal-plane knee measures to more effectively
identify female athletes at risk of ACL injury. Once identi-
fied, these athletes may be targeted for neuromuscular
training designed to increase dynamic coronal-plane knee
stability. These screening methods may work synergisti-
cally to provide the greatest potential to selectively iden-
tify high-risk active and passive knee stability profiles that
indicate female athletes who would benefit from targeted
neuromuscular training.50,51 Prevention of these injuries
would allow tens of thousands of young female athletes to
continue the health benefits of sports participation into
adulthood and avoid the long-term disability and osteoarthritis
that occur with an estimated 10-fold or greater incidence after
knee ligament injury.15,25,45,75

The absence of passive and/or dynamic knee joint stability
may be responsible for the increased rates of knee injury in
female athletes.35,38 but it is not normally examined in ath-
letes before participation. Standard preparticipation physical
examinations rarely assess joint stability. Huston and Wojtys38
reported greater knee laxity in mature female ath-
letes relative to males, while Cheng et al12 showed no differ-
ences in prepubescent children. Few if any measures are
assessed during preparticipation examinations, and plans for
intervention are rarely implemented. Although muscu-
oskeletal disorders are observed during preparticipation
examination in approximately 10% of examined athletes,48
intervention occurs in only 1% to 3%.70 Addressing these defi-
ciences in current screening protocols may allow the target-
ing of specific athletes to potential prophylactic treatments
that reduce ACL injury risk. In addition, proper rehabilitation
of athletes after a knee injury may be crucial to help reduce the
potential for an ACL injury.56 The current investigation
reported that 37% of the subjects indicated a prior knee injury
on their questionnaire. While this factor did not significantly
contribute to the current regression model's prediction of
ACL-injured status, previous authors have demonstrated
prior lower extremity injury may lead to increased risk of
injury.5,49,51 For this reason, prior knee injury was included in
the final regression analyses based on its potential confound-
ing effect on the other significant risk factors. Future investi-
gations should continue to determine the relationship of prior
knee injury to the subsequent ACL injury.

Limitations

Injury to the ACL in female athletes likely has a multifac-
torial origin, with several potential elements that determine
injury outcome. Prior epidemiologic data demonstrate that
many physical and psychological parameters may contribute
to ACL injury rates in female athletes. There are several pos-
sible contributing and confounding variables that were not
controlled for in the current study design, which included
school, team/sport, age/grade, aggressiveness, foot pronation,
quadriiceps angle, femoral notch width, biomechanical
and neuromuscular parameters, reliable menstrual status report-
ing, blood hormone levels, previous lower extremity injury
other than the knee, and prior knee injury classification.
Without the inclusion of these measures in the regression
analysis, their potential confounding effects of knee laxity
and ACL-injury risk cannot be controlled for, thus limiting the
generalizability of the current results. To better define
the mechanism of increased risk of ACL injury in female athletes, future investigations with larger samples size should aim to develop more robust ACL injury prediction models that include all contributing parameters. However, the significant effects of general joint-laxity measures on ACL-injury status in female athletes were observed in this study. The observed differences were of a magnitude outside the protocol’s measurement error and should be considered a potential contributing mechanism to increased ACL-injury risk in female athletes.

CONCLUSION

It is well known that ACL-injury risk in the athletic population is greater in female athletes compared with male athletes. Prior studies indicate that decreased dynamic knee stability, evidenced from decreased coronal-plane knee stability, provides a mechanism that underlies this gender disparity in ACL-injury risk.21-23,32,33 The current results indicate that passive anteroposterior tibiofemoral laxity and passive knee hyperextension may contribute to increased ACL injury risk. Future research is warranted to determine the relationships between active and passive knee stability and to determine their relationship to one another or determine if they independently increase risk of injury in female athletes. Female athletes who demonstrate decreased active and passive knee stability may be indicated for targeted neuromuscular training.51 No validated method for the screening and identification of athletes at greater risk of ACL injury based on joint laxity has previously been available. Further research into the proposed theories relating to this musculoskeletal problem is warranted for intervention and possible prevention of ACL injuries in female athletes.

ACKNOWLEDGMENT

The authors acknowledge funding support from National Institutes of Health Grant R01-AR049735. The authors thank Carmen Quatman for her critical input into the article content.

REFERENCES