Predicting Unfavorable Discharge Disposition Among Hip Fracture Patients

Hesham Saleh, BS; Jordan Gales, BS; Loveita Raymond, MD; Kenneth Egol, MD; Sanjit Konda, MD

International Geriatric Fracture Society
October 5, 2016

Department of Orthopaedic Surgery
HOSPITAL FOR JOINT DISEASES
None of the authors have financial or institutional disclosures related to this research.
Introduction

• Estimations report the geriatric population will increase from 43.1 million in 2012 to 83.7 million in 2050

• More than 300,000 hip fractures occur annually within the US, with this number expected to double by 2040
 • 86% occur in individuals ≥ 65 years old

• Hip fractures are associated with significant morbidity, mortality, and costs
 • Permanent disability: 32-80%
 • Require long-term skilled nursing care: 6-60%
 • Costs: $19,000- $66,000 [44% related to nursing costs]
 • $10.3-15.2 billion annually; $446 billion by 2050
Importance of this Study

• Early discharge planning leads to:
 • Decreased in-hospital complications
 • Reduced lengths of stay, costs, and hospital resource utilization

• Currently, few tools available to assist orthopaedic surgeons to determine who will require rehabilitation services or skilled levels of care to facilitate early discharge planning
Purpose of the Study

• STTGMA is a novel inpatient mortality risk tool we have developed and validated in the National Trauma Databank as a reliable tool for triage analysis.

• Investigate whether STTGMA scores are associated with discharge dispositions and thus provide a valuable tool to predict which patients would benefit from early discharge planning.
How is STTGMA calculated?

- STTGMA score (0-100%) represents the risk of inpatient mortality during index hospitalization

Variables Utilized in STTGMA

<table>
<thead>
<tr>
<th>Injury Status</th>
<th>Health Status</th>
<th>Functional Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow Coma Scale</td>
<td>Charlson Comorbidity Index</td>
<td>Ambulatory Status</td>
</tr>
<tr>
<td>AIS Head/Neck</td>
<td>Anticoagulation</td>
<td>Use of assistive device</td>
</tr>
<tr>
<td>AIS Chest</td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>AIS Extremity/Pelvis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methodology

• Patients ≥ 55 years old admitted with a primary diagnosis of hip fracture were enrolled (ICD-9 820.x)

• On initial evaluation, STTGMA score was calculated

• Patients prospectively followed and discharge locations collected and divided into:
 • Favorable Disposition: Home, Acute Rehab
 • Unfavorable Disposition: Skilled nursing facility, Hospice, Hospital transfer, Death
• N= 144 patients
• Mean Age: 80 ± 11 years
• Mean STTGMA score: 10.6% ± 24.9
Discharge Dispositions

Average STTGMA Scores
Favorable Dispositions: 2.6% ± 14.9
Unfavorable Dispositions: 14.3% ± 27.6; p = 0.009

Favorable Discharge Dispositions

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Mean STTGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Rehab</td>
<td>30 (20.8%)</td>
<td>0.6% ± 1.2*</td>
</tr>
<tr>
<td>Home</td>
<td>17 (11.8%)</td>
<td>5.9% ± 24.2*</td>
</tr>
</tbody>
</table>

Unfavorable Discharge Dispositions

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Mean STTGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skilled Nursing Facility</td>
<td>85 (59.0%)</td>
<td>11.0% ± 24.8*</td>
</tr>
<tr>
<td>Deceased</td>
<td>10 (6.9%)</td>
<td>45.4% ± 36.0*</td>
</tr>
<tr>
<td>Transferred to OSH</td>
<td>1 (0.7%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Hospice</td>
<td>1 (0.7%)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* ANOVA t-test, p < 0.005

Hospital for Joint Diseases • Department of Orthopaedic Surgery
Model Analysis

- Logistic regression model was statistically significant
 - $\chi^2 (10) = 34.995$, $p < 0.005$

- Quantifying our model’s capacity to predict unfavorable discharges:
 - AUROC: 0.799 (95% CI 0.724-0.874, $p < 0.005$)

<table>
<thead>
<tr>
<th>StTGMA ≥ 5%</th>
<th>Unfavorable Disposition</th>
<th>Favorable Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31 (96.9%)</td>
<td>1 (3.1%)</td>
</tr>
<tr>
<td></td>
<td>32 (100%)</td>
<td></td>
</tr>
<tr>
<td>STTGMA ≤ 5%</td>
<td>68 (60.7%)</td>
<td>44 (39.3%)</td>
</tr>
<tr>
<td></td>
<td>112 (100%)</td>
<td></td>
</tr>
</tbody>
</table>
| | 99 | 45 | 144
Conclusions

• STTGMA has the capacity to predict unfavorable discharge dispositions for hip fracture patients

• May be utilized as a valuable clinical risk tool in guiding patient care and early preparation of discharge planning (ie STTGMA \geq 5%)

• Early discharge planning has multiple proven benefits for both the patient and the health-care providers
References

Thank You