PROTEIN-LOSING ENTEROPATHIES: HYPOALBUMINEMIA IS NOT ALWAYS TERRIBLE

Michael D. Willard, DVM, Diplomate ACVIM-SA
Professor of Small Animal Clinical Sciences
Department of Small Animal Clinical Sciences
College of Veterinary Medicine
Texas Veterinary Medical Center
Texas A&M University
College Station, TX 77843

When concerned with protein loss of any cause, one should measure serum albumin concentrations as opposed to the serum total protein concentration. Do not use human clinical pathology laboratories because their technology sometimes does not detect canine albumin; this means that they routinely report serum albumin concentrations of < 1.5 gm/dl in clinically normal dogs. If the patient has substantial hypoalbuminemia, the first step is to examine the skin for obvious lesions which can cause protein loss. Cutaneous lesions sufficient cause such hypoalbuminemia are obvious; you should be able to just look at the patient and know if this is the problem or not. Next, hepatic function testing (e.g., resting and post-prandial serum bile acid concentrations) and a urinalysis are requested. If there is any doubt on the urinalysis, then a urine protein:creatinine ratio will quantify the magnitude of urinary protein loss. Severe hypoalbuminemia (i.e., < 2 gm/dl) in an animal with diarrhea suggests a protein-losing enteropathy (PLE); however, diarrhea (even when severe) in no way is sufficient to eliminate hepatic disease as the cause of the hypoalbuminemia. To further complicate matters, a very substantial number of dogs and cats with PLE do not have vomiting or diarrhea. Some are asymptomatic while others only have ascites. This may be especially true of dogs with primary intestinal lymphangiectasia.

In general, once severe, exudative cutaneous disease, protein-losing nephropathy, and hepatic insufficiency are eliminated, then PLE is becomes a diagnosis of exclusion in patients with a serum albumin < 2.0 gm/dl. Fecal concentrations of alpha-1 protease inhibitor can be used as a means of confirming PLE if there is confusion because of concurrent hepatic or renal disease. The major use for this test in clinical medicine seems to be the hypoalbuminemic patient in which you strongly suspect PLE (e.g., based upon it having severe diarrhea or having hypocholesterolemia), but which also has PLN and/or hepatic disease. However, there are several nuances about this test, especially collecting samples, that make it potentially difficult to interpret. We seldom need this test in clinical practice. Finally, contrary to what the textbooks say, PLE may be associated with a low, normal or increased serum globulin concentration – personally, finding “panhypoproteinemia” is not very helpful in my patients.

Hypoalbuminemia has been reported to be a poor prognostic sign in patients with chronic GI disease; however, there may be one or more subset(s) of patients that respond well to appropriate therapy if diagnosed in a timely fashion. Therefore, diagnosing PLE is not necessarily cause for despair. Aggressive diagnostics are typically an appropriate recommendation if PLE patients. Although therapeutic trials can be chosen in place of classic diagnostic tests in many of the more common alimentary tract diseases (e.g., dietary allergy, dietary intolerance, antibiotic-responsive enteropathy, parasites), such an approach is generally
ill-advised if the serum albumin concentration is less than 2.0 g/dl. This is true because it may be necessary to perform an antibiotic and/or dietary therapeutic trial for 3-6 weeks in order to ascertain if it is being effective, and a patient with severe PLE can become markedly worse in that time if the serum albumin concentration is falling rapidly.

Any GI disease can cause PLE if it is severe enough. Many acute GI disease cause PLE (e.g., parvoviral enteritis); however, these diseases typically are comparatively easier to treat than the chronic GI disease causing PLE. Therefore, the focus in this lecture is PLE in animals with chronic GI disease. The major causes of PLE in adult dogs tend to be intestinal lymphangiectasia, alimentary tract lymphoma (LSA), intestinal fungal infections (i.e., histoplasmosis and pythiosis), and inflammatory bowel disease (IBD). Other causes include alimentary tract ulceration/erosion, severe disease of intestinal crypts, antibiotic-responsive enteropathy, and parasites. The major causes of PLE in juvenile dogs tend to be parasites and chronic intussusception. Cats with PLE usually have IBD or alimentary tract lymphoma.

Many dogs with PLE have hypocholesterolemia. Pets with protein-losing nephropathies usually have hypercholesterolemia, while those with hepatic insufficiency often have hypocholesterolemia. Fecal examinations for parasites are appropriate. Although parasites are an uncommon cause of PLE in adult animals, pets in select environments (e.g., confined areas where patients can reinfect themselves) may incur substantial parasitic loads.

Once PLE has been diagnosed, intestinal biopsy is usually the ultimate means of establishing a diagnosis. Biopsy can be done via laparotomy, laparoscopy, or endoscopy. Feeding a small, fatty meal (use canned food, not dry, and add in cream or corn oil) the night before the procedure might (?) make it easier to diagnose lymphangiectasia. Flexible endoscopy, when done by someone who is trained in how to take diagnostic tissue samples and submit them, is usually more than adequate to obtain diagnostic samples. However, if endoscopy will be used to biopsy the small intestines, it is preferable to first ultrasound the abdomen to make sure that there are no focal infiltrates that are out of reach of the endoscope, or which might be more easily diagnosed by ultrasound-guided fine needle aspiration. Furthermore, there are ultrasonographic changes (streaks in the submucosa) that can be diagnostic. Radiographs and barium series are seldom as sensitive as ultrasound. If flexible endoscopy will be done, one should biopsy both the duodenum and ileum. There have been numerous cases in which lymphangiectasia, IBD or LSA were obvious in the ileum but not in the duodenum. It is not necessary to enter the ileum with the endoscope to obtain a good tissue sample of the ileal mucosa.

Laparotomy and laparoscopy are good means of obtaining diagnostic samples, but it is surprisingly easy to procure non-diagnostic samples with these techniques (i.e., “full-thickness sample” is not synonymous with “diagnostic sample”). Endoscopy does have the advantage of allowing one to visualize mucosal lesions that are “invisible” when looking at the serosa. In some cases, the diagnosis can only be obtained by biopsying these focal lesions. If full-thickness biopsies are obtained in severely hypoalbuminemic animals, then serosal patch grafting will minimize the risk of suture line leakage. A nonabsorbable or a poorly absorbable suture (PDS) should also be used.

Intestinal lymphangiectasia seems particularly common in Yorkshire terriers and Soft-Coated Wheaten terriers, but may occur in any breed. Sometimes these dogs have distinct ultrasonographic findings: “streaks” in the mucosa that represent dilated lymphatics. While histopathology is obviously the desired means of diagnosis, one can sometimes make a definitive
diagnosis based upon grossly visible endoscopic findings (i.e., numerous, erratic, grossly engorged lacteals seen as large white blebs on the mucosa). These lesions are “fragile” and apparently may be destroyed by biopsying them (both endoscopically and surgically) if the endoscopist or surgeon is not careful. It is important to note that lymphangiectasia can be a relatively localized disease in the intestines, being present in only the ileum or only the jejunum or only the duodenum; therefore, it is important to biopsy as much of the intestinal tract as possible. Furthermore, if one biopsies the intestines and cannot find a cause of PLE, sometimes lymphangiectasia can be tentatively diagnosed by elimination (i.e., by eliminating IBD, lymphoma, parasites, intussusception, fungal infections, etc).

Diagnosis by means of endoscopic biopsy is certainly possible if the endoscopist is trained in taking high quality tissue samples. However, recent work has demonstrated that poor quality mucosal biopsies (e.g., primarily villus tips or substantial “squash” artifact) makes is much more difficult or even impossible to find the lesions. If one is taking high quality tissue samples (i.e., total length of the villi plus subvillus mucosa down to the border of the mucosa and muscularis mucosa), it typically takes about 6-7 tissue samples to have 90-99% confidence in finding lymphangiectasia. However, it can take 5-7 times as many tissue samples to have the same assurance if you are obtaining poor quality tissue samples that primarily consist of villus tips.

When doing endoscopy, it is important that ileal biopsies be taken in addition to the typical duodenal biopsies. We are finding that ileal biopsies often reveal lesions not found on duodenal biopsies. This is true for lymphangiectasia as well as lymphoma and other lesions. With basic training, an endoscopist should be able to obtain ileal biopsies endoscopically at least 85%+ of the time. Typically, ileal biopsies are often of higher quality than duodenal biopsies.

Therapy for intestinal lymphangiectasia revolves around an ultra-low fat diet, preferably with anti-inflammatory therapy designed to alleviate the lipogranuloma formation that commonly occurs within the intestinal wall and/or mesentery. Supplementation with medium chain triglyceride oil (MCT) used to be recommended because MCT oil supposedly bypasses intestinal lymphatics thus preventing further rupturing of the lacteals. Pancreatic enzymes were often added to the diet to ensure digestion of the medium chain triglyceride oil. MCT oil is seldom used anymore, probably because appropriate dietary therapy is usually more than sufficient. Feeding homemade diets that are highly digestible and ultra-low in fat (e.g., white turkey meat plus potato or rice) or feeding commercial diets is often very helpful in these patients. Commercial low fat diets can be used very successfully, but they need to have the lowest possible fat content. Such a diet can be so successful that it might occasionally be appropriate to use it as a therapeutic trial. Dogs with lymphangiectasia often show a marked increase in serum albumin concentration within 7-14 days of starting such a diet.

The important of lipogranulomas in the intestinal wall and mesentery is uncertain. However, we hypothesize that some patients fail to respond to appropriate dietary therapy because of formation of very large or excessive numbers of lipogranulomas that so completely obstruct the intestinal lymphatics that even an ultra-low fat diet cannot prevent lacteal rupture. Therefore, once a diagnosis of lymphangiectasia is made (either by histology, grossly at endoscopy, or tentatively by response to an ultra-low fat diet), it seems to be appropriate to use anti-inflammatory therapy designed to prevent granuloma formation/enlargement. Prednisolone, azathioprine, and/or cyclosporin are commonly used for this purpose. I do not like prednisolone, simply because of all the side effects it has in these patients. I like cyclosporine, but be aware
that it is critical that you measure blood levels of the drug if you use cyclosporine. Not only is there a major difference between patients in how much they absorb, but the bioavailability of the same product may change as the intestine heals.

If the serum albumin is very low (e.g., < 1.3 gm/dl), one is often tempted to administer a plasma transfusion while waiting to see what effect the diet will have. However, it is exceedingly difficult to increase the serum albumin concentration by transfusing PLE patients with plasma because so much of the albumin is quickly lost out the gut. You would probably have to give at least two and possibly three units of plasma to a 15 lb dog in order to raise the serum albumin from 1.0 gm/dl to 1.6 gm/dl, and sometimes you would have to give more. However, any benefit will probably be so short lived that it is not cost-effective. If it is critical to raise the plasma oncotic pressure, then administering hetastarch may be preferred because it costs less than plasma, and it stays in the intravascular compartment longer than albumin.

These patients may be at increased risk for hypomagnesemia which may potentiate the problem of hypocalcemia. At this time, we do not know how important it is to supplement magnesium to patients, but severe hypomagnesemia can be resolved by a constant rate infusion of magnesium sulfate.

Lesions of the intestinal crypts have been recognized as being associated with PLE in dogs. We have identified two different lesions of the small intestinal crypts that can cause PLE. One type is characterized by crypts (usually duodenal) that are filled and somewhat distended with proteinaceous fluid and necrotic inflammatory cells. While such dilated crypts can be found in many animals, including clinically normal dogs, finding large numbers of them in multiple tissue samples seems to be consistently associated with PLE. We do not know if this is a cause-and-effect relationship, or if the dilated crypts are simply a marker for some other process but are not causing the protein loss themselves. Several of these patients have responded to therapy with elemental diets, total parenteral nutrition, prednisolone, azathioprine, and/or metronidazole. We have seen this lesion associated with IBD as well as lymphangiectasia (especially in Yorkshire terriers).

A second type of crypt lesion that appears to be less common than the first, if characterized by focal accumulations of mucus causing massive distention of the intestinal crypts. This has been reported once before, and we have seen a few such cases. The most important aspect of diagnosis seems to be the fact that the lesion may be very focal, almost appearing as ulcers when looking at the intestinal mucosa through an endoscope. Therapy similar to that used on animals with the other form of crypt lesion may be helpful. We have used cyclosporin, but do not know if it is helpful, or if the clinical response is due to the other drugs that the patient is receiving.

These lesions have not been commonly reported. Recent work has shown that these lesions are extremely easy to miss if poor quality endoscopic biopsies are performed. While 7-12 high quality tissue samples (i.e., full length of villi plus subvillus mucosa down to the level of the muscularis mucosa) will find these lesions 90-99% of the time, about 7 times as many tissue samples will be needed if poor quality samples primarily consisting of villus tips are submitted.

Chronic intussusception is a relatively important, and often missed cause of PLE in juvenile animals. The classic history is one of acute enteritis (e.g., parvoviral enteritis) which does not resolve as expected. The patient feels somewhat better, but continues to have diarrhea, and the serum albumin concentration gradually diminishes. It can be very hard to palpate an
ileo-colic intussusception; abdominal ultrasound is clearly the preferred way to diagnose intussusception. Therapy is surgical.

Although uncommon, nematodes may cause PLE in adult animals if there are large numbers of them. Whipworms and hookworms in particular may occasionally be responsible for PLE in older dogs. However, giardiasis has been reported to cause PLE in people.

We believe that we are starting to recognize ARE as a cause of PLE in dogs. We now have several patients that appeared to have marked increases in their serum albumin concentration associated with antibiotic therapy. However, because dietary change is often performed simultaneously with antibiotic therapy in these patients, cause-and-effect is not clearly established. However, since we believe that bacteria (i.e., ARE or dysbiosis) is probably the ultimate cause of IBD, it makes sense that treating ARE may resolve some cases of PLE.