THE PEDIATRIC ATHLETE - ARE THEY JUST SMALL ADULTS?

Kristin Meyer, DPT, SCS, ATC
Iowa Physical Therapy

Objectives

- Define the pediatric athlete
- Pediatric females vs. males
- Common pediatric injuries
- Pediatric rehab strategies
- Pediatric athlete and resistance training

Why Is This Topic Important?

- Estimated 30 million kids (age 5-18) in US participate in organized sports programs
- Sports are the leading cause of injury in pediatrics and adolescents - 4 million Sports Related Injuries(SRI) in US per year
- Yearly cost of treating SRI estimated to be $1.8 billion
- Increased numbers, increased intensity, increased specialization, younger age

Franklin CC and Weiss JM, Curr Opin Pediatr, 2012

Average age of Sports Related injuries (SRI):
- boys: 13.0 yrs - girls: 12.4yrs

- Most common sports:
 - Football - Soccer
 - Basketball - Hockey
 - Baseball/ softball - Wrestling

Taylor et al., Acad Emerg Med, 2000

This information is the property of Kristin Meyer and should not be copied or otherwise used without express written permission of the author
Who Is The Pediatric Athlete?

- Children 5-12
- Adolescents 13-21

Adolescence: Orthopedic definition
- Begins: At the onset of puberty for the given individual regardless of age or gender
- Ends: At skeletal maturity. Closed growth plates

When Are Kids Ready For Sports?

- “At the time when a child has attained the necessary motor, physical, cognitive, social, and adaptive ability to meet the demands of a particular sport”

- Where is your patient along the development continuum?
 - Physically
 - Emotionally
 - Mentally

The Pediatric Athlete - Are They Just Small Adults?

Are They Just Small Adults… Physically?

- Neural development:
 - Brain’s most rapid and critical period of growth is from age 0 to 2
 - At age 2 the brain is 80% the size of the adult brain
 - Glial cell and myelination production continues until about age 10
 - Acquisition of motor skills
 - Growth spurts at 6-7 yrs, 10-12 yrs, ~ 18 yrs of age (changes in coordination/balance)
• Vision: young children have myopic acuity – primarily due to their less spherical eyeball shape
 – Visual Closure: 5 years
 – Tracking objects: 6-7 yrs
 – Judging velocity: 6-7 yrs
 – Figure-ground perception: 8yrs
 – Object size perception: 11 yrs
 – Adult depth perception: 12 yrs

• Hearing: basic auditory listening skills mastered by 3 years of age

 ➢ Stricker, Pediatr Clin N Am, 2002
 ➢ Cech and Martin, 1995

Thermo-regulation

• Heat illness is the leading cause of death and disability during HS and collegiate athletics
• Average 5,946 non-fatal ED visits per year for heat illness related to sports and recreation
• Incidence highest among males (72%) ages 10-14yo (18.2%) 15-19yo (35.6%)

 ➢ CDC: MMWR July 29, 2011

Thermo-regulation:

• Children have a poorly developed subcutaneous fat layer, allowing for hypothermia:
 – Higher body surface area and inability to shiver leads them to lose heat 4x faster

• Increased opportunity for hyperthermia:
 – Higher body surface area
 – Increased metabolic rate
 – Decreased number of sweat glands
 – Increased threshold to begin sweating

 ➢ Stricker, Pediatr Clin N Am, 2002

Bone development

– Bone vs. soft tissue lengthening
 • Long bones typically fuse by:
 – 17.5 yrs ± 2 in boys
 – 14.5 yrs ± 2 in girls
 • Skeletal growth continues until age 30 (3-5mm increase per year)
 • Peak bone density mostly achieved in adolescence
 • Tensile strength of ligaments and tendons greater than epiphyseal plates
 • Common areas of injury
Cartilage
- Activity is important in development
- Low resistance to repetitive loading
- Less resistance to shear forces

Balance and Postural Control
- Center of mass
 - Moves from T12 to L5-S1
- Three balance systems:
 - Vision, vestibular, proprioception
- Coordination – varies with somatic growth spurts

Are They Just Small Adults…Mentally?
- Selective attention and use of complex memory strategies mature around 10-12 yr
- Development of abstract thought – 13 yr
- Present oriented with an inability to perceive future benefits/problems
- Unable to reflect on actions

Are They Just Small Adults…Emotionally?
- Social pressures
 - Parents, coaches, friends/teammates, scholarships, media...
- What is pain?
 - Frequently kids don’t understand pain
 - Often can’t localize pain, can’t differentiate “stretch pain” from “real pain”
- Pain scales different
 - FLACC pain scale used from 2mo-7yr
 - Visual pain scales (faces, pictures)
When Are Kids Ready For Sports?

• Preschool (ages 3-5)
 – Develop gross motor activities between 3-6 yrs
 – Unable to compare their abilities to others before age 6
 – Egocentric
 – Difficulty tracking objects and determining velocity
 – Difficulty in processing multiple auditory stimuli
 – Memory is enhanced with the use of visual aids
 – Concrete-operational – they need clear and concise information
 – Learn from trial and error
 – Short attention spans (5-15 minutes)
 – Poor selective attention

 [Image: Committee on Sports Medicine and Fitness, Pediatrics, 1992]

• Middle childhood (ages 6-11)
 – “Fine tuning” gross motor skills
 – Continue to improve with practice
 – 60% can throw, kick, run, jump, catch, hop, and skip
 – Before age 9, unable to fully understand the competitive nature of sports
 – Developing their sense of right and wrong
 – Balance improves
 – Improved visual acuity, tracking ability, and integration of perceptual motor skills
 – Begin to form body image

 [Image: What Does The Research Say?

• Kids ages 8-10 yrs had higher injury rates than younger (5-7 yrs) or older (11-13 yrs) in football and baseball

 [Image: During this time the parameters of the game also changed

 [Image: Radelet et al, Pediatrics, 2002]
Are Pediatric Female Athletes Similar To Males?

- Boys and girls are similar before puberty in:
 - Height
 - Percent body fat
 - Weight
 - Motor skills
 - Strength

- Differences seen after puberty in:
 - Muscular strength
 - Neuromuscular control
 - Injury rates

Concerns for Female Athlete

- Increased injury rates - ACL, stress fractures
- Female Athlete Triad - disordered eating (energy deficit), amenorrhea (menstrual disturbances), osteoporosis (bone loss)
- Sex discrimination?
- Other?

Adolescent Specific Injuries

Skeletal, Muscular, Ligamentous, Cartilagenous

- Growth Plate Fractures:
 - Sprains are rare
 - Most sprains are really (type 1) growth plate fractures
 - Type 1 and 2 fractures non-operative generally
 - Type 3 and 4 fractures usually surgical

Adolescent Specific Injuries

Skeletal
Adolescent Specific Injuries

Growth Plate Fractures

- Non-displaced Type 1 fracture
- Crosses growth plate, often misdiagnosed as sprain

Adolescent Specific Injuries

Growth Plate Fractures

- Displaced Type 1 growth plate fracture
 - Apophyseal Avulsion
 - Deceleration / jumping injury
 - Severe pain and inability to bear weight
 - Crutches as needed with slow return to activity
 - Rarely Surgical

Adolescent Specific Injuries

Skeletal

- Long Bone Fractures
 - Similar to adult injuries
 - Cast treatment common to avoid growth plate injury from internal fixation
 - Healing is bone dependent ~ 6 - 8 weeks
 - Occasionally surgical
 - External fixation

This information is the property of Kristin Meyer and should not be copied or otherwise used without express written permission of the author.
Adolescent Specific Injuries
Muscular

- Muscle Strain / Rupture
 - Common Site:
 - Rectus Femoris
 - Adductors (groin pull)
 - Hamstrings
 - Plantaris, Medial head of gastrocnemius
 - Treatment
 - Rest, Gentle stretch
 - Slow resumption of activity
 - Can be up to eight weeks for recovery
 - If palpable defect or very weak then MRI

Adolescent Specific Injuries
Muscular

- Muscle Contusion
 - Quadriceps common site
 - Often large hematoma
 - Ice and Immobilize in flexion
 - May lead to Myositis Ossificans

Adolescent Specific Injuries
Ligamentous

- Knee:
 - Anterior Cruciate Ligament (ACL)
 - Uncommon in this age group
 - Difficult to treat surgically due to growth plate
 - Surgery may be delayed until maturity
 - Look for concomitant cartilage injuries

Adolescent Specific Injuries
Ligamentous

- Knee:
 - Medial Collateral Ligament
 - More common (esp. hockey)
 - Treatment almost always conservative
 - Pain usually over femoral insertion (medial epicondyle)
 - Three grades of severity (1,2,3)
 - Hinged knee brace 6-12 weeks depending on severity

This information is the property of Kristin Meyer and should not be copied or otherwise used without express written permission of the author.
Adolescent Specific Injuries

• Dislocations
 – Rare in the young adolescent
 – Elbow:
 • 2-3 weeks immobilization then start therapy
 • Stiffness is problem, rarely surgery
 – Shoulder:
 • Chance of repeat dislocation if occurs before age 20 is >90% without surgery
 • Therapy is still first line treatment

Adolescent Specific Injuries

• Traumatic Cartilage Loss
 – Patellar Sleeve Fracture
 • Occurs in younger adolescents and children
 • Appears as simple fracture of inferior pole of patella
 • Includes full thickness loss of cartilage from backside of patella
 • MRI
 • Surgery

Adolescent Specific Injuries

• Meniscus Tears
 – Uncommon in this age group
 – Catching, popping, locking symptoms
 – Joint line tenderness
 – MRI diagnosis
 – Arthroscopic repair if possible / debridement
 – Meniscal transplant
Avascular Insults
Osteochondritis Dissecans

- Osteochondritis Dissecans (OCD)
 - Occult trauma vs Avascular insult
 - Involves an area of sub-chondral bone and overlying cartilage
 - Occur in knee, elbow, ankle, rarely others
 - Best prognosis in patients with open growth plates
 - MRI evaluation necessary
 - Stable lesions can be observed, protected weight bearing, cessation of sport
 - Loose fragments are reattached or debrided

Avascular Insults
Osteochondritis Dissecans

- OCD of Knee
 - Most common on lateral aspect of medial femoral condyle
 - Xray is helpful: “tunnel” or “skiers” view
 - Catching, popping, ache, not always painful

Avascular Insults

- Legg-Calve-Perthes: AVN of ossific nucleus of the femoral head caused by loss of blood supply
 - Children 3-12 yo (m>f; 4:1)
 - Trendelenberg gait
 - Decr. ROM especially abduction and IR
 - Pain in groin, hip, knee (referred)
- SCFE: growth plate of proximal femoral physis weak and becomes displaced
 - Children 10-15yo (m>F; 3:1)
 - Trendelenberg gait
 - Pain in groin, anterior/medial thigh and knee
 - Decr. ROM especially flex, abd, IR
 - Leg moves into ER when attempt flexion

Overuse / Repetitive Injuries

- Tendonitis:
 - Can occur in any tendon due to repeated stress
 - Inflammation and microtrauma of tendon
 - Patellar tendon common (jumper’s knee)
 - Prolonged rest, anti-inflammatories to heal
 - May participate as pain allows
Overuse / Repetitive Injuries

- **Traction Apophysitis**
 - Occurs at growth plate below a tendon insertion into bone
 - Repetitive microtrauma at growth plate
 - Pain with activity, palpation
 - Rest is only cure
 - Ischium, patella, base of 5th metatarsal, etc.

Overuse/ Repetitive Injuries

- **Osgood Schlatter Disease:**
 - 10-15 year old, boys > girls
 - Overuse syndrome
 - Repeated stress on tibial tubercle
 - Rest, anti-inflammatories, sports as tolerated
 - Resolves with maturity

Overuse / Repetitive Injuries

- **Shoulder Pain**
 - Usually instability due to ligamentous laxity
 - Chronic irritation, fatigue, synovitis
 - Not rotator cuff pathology in this age group
 - Treatment is rest and rotator cuff strengthening
 - Swimmers, throwing athletes

Overuse / Repetitive Injuries

- **Stress Fractures**:
 - The “dreaded black line”
 - Not common in adolescents,
 - More common in the 18+ age group
 - X-Rays not always diagnostic
 - MRI conclusive diagnosis
 - Rest +/- Casting is usually appropriate
NATA Position Statement on Management of Overuse Injuries
1. Injury Surveillance
2. Pre-participation Physical Exam
3. Identify Risk Factors
4. Coach education and medical supervision
5. Sport Alterations
6. Training and Conditioning Progression
7. Delayed Specialization

Pediatric Rehab Strategies
- Case 1: common spine conditions
- Case 2: apophyseal avulsion
- Case 3: common UE conditions
- Case 4: common LE conditions

Case 1: 16 y/o male athlete with “poor posture”
Common Spine Conditions
- Postural Syndrome
- Spondylolysis, Spondylolisthesis
- Scoliosis
- Scheuermann’s Kyphosis Disease
- Disc herniation

Spine Rehab. Intervention Strategies
- Postural education - no slouching, neutral pelvis, abdominal bracing
- Core strengthening including scapulae, trunk, pelvis - endurance rather than power
- Progressive dynamic lumbar stabilization
- Muscle flexibility- hamstrings, upper traps, lats
- Bracing (Scoliosis, Scheuermann’s)
Case 2: 14 y/o male pulled up while running 40 yd dash in PE class and fell to ground w/ severe butt pain. Unable to walk on his leg

Pelvis - Apophyseal Avulsion Fractures

• Ischial tuberosity 54% - hamstrings
• ASIS 19% - sartorius
• AlIS 22% - rectus femoris
• Pubic symphysis 3% - adductors
• Iliac crest 1% - external oblique (traction), “hip pointer” with contusion
• Greater trochanter - (rare) hip abductors

Apophyseal Avulsion Fracture
Rehab Intervention Strategies

• Comfort and protect
• Ice progressing to heat
• Progress gentle strength, stretch, and activity as tolerated - 2-6 weeks?
• Education

Case 3: 12 y/o male pitcher with worsening R shoulder and elbow pain along with decreased throwing velocity

Common Upper Extremity Conditions

• Little league shoulder
• Little league elbow
• Multi-directional instability/ laxity

Upper Extremity Rehab Intervention Strategies

• Rest - LL shoulder (2-3 mo); LL elbow (2-4 wks)
• Progressive strengthening - including core, cuff program, Popeye program
• Throwing analysis
• Return to throwing program
• Education - appropriate pitch count (AAOS Guidelines for Young Baseball Player)
Case 4: 13 y/o male, R knee pain (3/10) for 2-3 mo. Pain and limping with walking, running, PE activities. Mildly overweight

Common Lower Extremity Conditions
- Slipped Capital Femoral Epiphysis (SCFE)
- ACL tears
- Traction Apophyseal injuries: Apophysitis:
 - Osgood-Schlatter’s Disease
 - Sinding-Larsen-Johansson
 - Sever’s Disease

Lower Extremity Rehab Intervention Strategies
- SCFE: post-op N/LWB 4-6 wks
 - Hip strengthening, core stability, balance, proprioception
- ACL: often conservative
 - Focus on neuromuscular control, LE mechanics, core strengthening, jump/landing training, balance/proprioception
 - ACL prevention programs
- Apophysitis: relative rest, flexibility, core strengthening

Can The Pediatric Body Handle Weight Training?

Myths About Resistance Training At A Young Age
- Will damage growth plates causing higher injury rates and stunting growth
- Will have negative effects on cardiovascular health
- Safer to participate in sports activities than resistance training
- Pre-pubertal kids cannot benefit from resistance training
Potential Benefits of Pediatric Resistance Training

- Increase muscle strength
- Increase muscle power
- Increase local muscle endurance
- Enhance motor skill performance
- Increase bone mineral density
- Improve body composition
- Improve insulin sensitivity
- Improve blood lipid profile
- Reduce risk of sports-related injuries
- Enhance sports performance
- Stimulate a more positive attitude toward lifetime physical activity

-Faugenbaum and Myer, Curr Sp Med Rep, 2010

Resistance Training Benefits

- **Strength training**
 - Neuromuscular gains vs. hypertrophy
 - Changes can be made in:
 - Increased recruitment
 - Increased frequency
 - Decreased inhibition
 - May improve sports performance

- **Aerobic training**
 - Pre-pubescent children can increase VO2 max but not to the extent that pubescent and post-pubescent children and adults are capable of
 - Maximum 10% VO2 max gain in pre-pubescent children compared to 15-20% in the other populations
 - "ceiling phenomenon" with gains in VO2 max

- Stricker, Pediatr Clin N Am, 2002

Resistance Training and Injury Prevention

- Minimal Studies in this age group
- Micheli- 15%-50% less overuse and acute injuries
- Hejna et al. 13-19 yo
 - Fewer injuries
 - Less time required to return to sports following injury
- Multifaceted program to reduce SRI
 - Increased muscle strength
 - Enhance movement mechanics
 - Improve functional abilities

- Stricker, Pediatr Clin N Am, 2002

This information is the property of Kristin Meyer and should not be copied or otherwise used without express written permission of the author.
Resistance Training and Performance Enhancement

- No consistent correlation in this age group between strength training and improved athletic performance or body composition
 - Sport specific movements
 - Multiplanar, proprioception challenging
 - Require coordination of multiple joints
 - Require balance and stability

A Synopsis Of Recommendations For Resistance Training In The Pediatric Athlete:

- Provide qualified instruction and close supervision
- Ensure the exercise environment is safe and free of hazards
- Begin each session with a dynamic warm-up
- Focus on developing proper exercise technique and learning fundamental training principals
- Perform 1-2 sets of 6-15 repetitions on strength exercises
- Perform 1-3 sets of 6 or fewer repetitions on power exercises
- Perform exercises for the upper body, lower body, and midsection
- Include exercises that require balance and coordination
- Cool down with less intense activities and stretching

A Synopsis Of Recommendations For Resistance Training In The Pediatric Athlete:

- Resistance train 2-3 times each week on nonconsecutive days
- Keep the program fresh and challenging by systematically varying the training program
- Motivation to begin should be from the athlete
- Loads should be specific to each child, increase gradually
- Equipment should be appropriate for the size of the child
- Competition should be discouraged
- Dynamic concentric contractions over the entire range of motion should be a focus
- Strength training should be a fun activity!

Thank you!

Questions?
Bibliography