SUMMARY: Revised Recommendations of the CMSC Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-up of Multiple Sclerosis

Committee:

Anthony Traboulsee,1 MD, Jack H. Simon,2 MD, Lael Stone,3 MD, Elizabeth Fisher,4 MD, David E. Jones,5 MD, Ajay Malhotra,6 MD, Scott D. Newsome,7 DO, Jiwon Oh,8 MD, Daniel S. Reich,9 MD, Nancy Richert,10 MD, Omar Khan,11 MD, Ernst-Wilhelm Radue,12 MD, Corey Ford,13 MD, June Halper,14 MSN, David Li,1,16 MD

1Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
2Portland VA Research Foundation and Oregon Health and Sciences University
3Mellen Center for MS Treatment and Research, Cleveland Clinic, Cleveland, USA
4University of Virginia
5University of Virginia
6Yale University
7Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA (SDN)
8St. Michael's Hospital, University of Toronto
9Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
10Biogen Idec
11University of Miami Multiple Sclerosis Center
12Department of Neurology, Wayne State University School of Medicine, Detroit, USA
13Department of Radiology, University Hospital, Basel, Switzerland
14University of New Mexico Health Science Center
15Consortium of Multiple Sclerosis Centers (CMSC), Hackensack, NJ, USA
16Departments of Radiology, University of British Columbia, Vancouver, Canada

Please send communication to Tony Traboulsee t.traboulsee@ubc.ca and Lori Saslow lorisas@msn.com, medical editor on behalf of the CMSC. Thank you.

Summary

An international group of neurologists and radiologists developed revised guidelines for standardized brain and spinal cord magnetic resonance imaging (MRI) for the diagnosis and follow-up of multiple sclerosis (MS). A brain MRI protocol with gadolinium is recommended for the diagnosis of MS. A spinal cord MRI is recommended if the brain MRI is non-diagnostic, or if the presenting symptoms are at the level of the spinal cord. A follow-up brain MRI with gadolinium is recommended to demonstrate dissemination in time, ongoing clinically silent disease activity while on treatment, to evaluate unexpected clinical worsening, to re-assess the original diagnosis, and as a new baseline prior to starting or modifying therapy. A routine brain MRI should be considered every 6 months to 2 years for all patients with relapsing MS. The brain MRI protocol includes 3D T1-weighted, 3D T2-FLAIR (fluid attenuated inversion recovery), 3D T2-weighted, post single-dose gadolinium-enhanced T1-weighted, and diffusion-weighted imaging (DWI) sequences. If 3D acquisitions are not possible, 2D acquisitions are acceptable. In either case, the subcallosal plane should be used to prescribe (2D) or reformat (3D) axial slices (≤3mm, no gap). The progressive multifocal leukoencephalopathy (PML) surveillance protocol includes FLAIR and DWI sequences only. The spinal cord MRI protocol includes sagittal T1-weighted and proton density, short tau inversion recovery (STIR) or phase sensitive inversion recovery (PSIR), axial T2- or T2*-weighted through suspicious lesions, and, in some cases, post-contrast gadolinium-enhanced T1-weighted imaging. The clinical question being addressed should be provided in the requisition for the MRI. The radiology report should be descriptive with results referenced to previous studies. MRI studies should be permanently retained and available. The current revision incorporates new clinical information and imaging techniques that have become more available.
SUMMARY: Revised CMSC MRI Protocol and Guidelines

Key changes to MRI protocols since the 2006 version (reference #3 below):
1. Emphasis on 3D sequences for brain MRI.
2. Progressive Multifocal Leukoencephalopathy specific monitoring protocol.
3. Optional orbit MRI protocol for severe optic neuritis.

Key changes to clinical guidelines since the 2006 version (reference #3 below):
1. Timing of brain MRI for monitoring patients on disease modifying therapy is more specific.
2. Timing of brain MRI for PML surveillance included.
3. Updated evidence on the value of MRI changes in determining treatment effectiveness.
4. Inclusion of radiologic isolated syndrome.

ACKNOWLEDGMENTS
The following individuals participated in workshops and/or reviewed the guidelines at various stages of development: Barry Arnason, Douglas Arnold, Frederik Barkhof, Guy Buckle, Jose Cabrera-Gomes, Peter Calabresi, Bruce Cohen, Lesley Costley, Patricia Coyle, Virginia Devonshire, Burton Drayer, George Ebers, Massimo Filippi, Joseph Frank, Douglas Graeb, Douglas Goodin, June Halper, Colleen Harris, Stanley Hashimoto, Robert Herndon, John Hooge, George Hutton, Douglas Jeffrey, Ciaran Keogh, Thomas Leist, Geert Lycklama à Nijeholt, Henry McFarland, David Miller, Mary Lou Myles, Paul O’Connor, Joel Oger, Donald Paty, Daniel Pelleiter, Michael Phillips, George Rice, John Richert, Peter Reckmann, Jay Rosenberg, Richard Rudick, James Scott, Randall Shapiro, Nancy Sicotte, James Simsarian, Karen Smith, Jay Tsuruda, Carla Wallace, Bitaan Weinshenker, Ernest Willoughby.

CONFLICT OF INTEREST STATEMENT
Organizational support and funding for the meetings provided by the Consortium of MS Centers (www.mscare.org).

KEY REFERENCES
7. Wingerchuk, Dean M., Banwell, Brenda, Bennett, Jeffrey L., et al. International Consensus Diagnostic
Key Tables:

Table 1

Standardized Brain MRI Protocol (diagnosis and routine follow-up of MS)

<table>
<thead>
<tr>
<th>Field Strength</th>
<th>Scans should be of good quality, with adequate signal-noise ratio (SNR) and resolution (in slice pixel resolution of ≤ 1mm x 1mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Prescription</td>
<td>Use the subcallosal plane to prescribe or reformat axial oblique slices</td>
</tr>
<tr>
<td>Coverage</td>
<td>Whole brain coverage</td>
</tr>
<tr>
<td>Slice thickness and gap</td>
<td>≤ 3mm, no gap (for 2D acquisition or 3D reconstruction)</td>
</tr>
<tr>
<td>Core sequences</td>
<td>Anatomic 3D inversion-recovery prepared T1 gradient echo (e.g. 1.0-1.5mm thickness)</td>
</tr>
<tr>
<td></td>
<td>Gadolinium single dose 0.1 mmol/kg given over 30 seconds</td>
</tr>
<tr>
<td></td>
<td>3D sagittal T2-weighted Fluid Attenuated Inversion Recovery (FLAIR)² (e.g. 1.0 to 1.5 mm thickness)</td>
</tr>
<tr>
<td></td>
<td>3D T2-weighted³ (e.g. 1.0 to 1.5 mm thickness)</td>
</tr>
<tr>
<td></td>
<td>2D axial diffusion weighted imaging; DWI (≤ 5mm slices, no gap)</td>
</tr>
<tr>
<td></td>
<td>3D FLASH (non IR prep) post gadolinium² (e.g. 1.0 to 1.5 mm thickness)</td>
</tr>
<tr>
<td></td>
<td>3D series would be typically reconstructed to 3mm thickness for display and subsequent comparison for lesion counts</td>
</tr>
<tr>
<td>Optional sequences</td>
<td>Axial proton density (PD)</td>
</tr>
<tr>
<td></td>
<td>Pre- or post-gadolinium axial T1 spin echo (for chronic black holes)</td>
</tr>
<tr>
<td></td>
<td>Susceptibility weighted imaging (SWI) for identification of central vein within T2 lesions</td>
</tr>
</tbody>
</table>

³Minimum 5-minute delay before obtaining post gadolinium T1. The 3D Sagittal FLAIR may be acquired immediately after contrast injection before the 3D FLASH series.

²If unable to do 3D acquisition, then 2D axial and sagittal FLAIR, axial fast spin echo proton density/T2, and axial post-gadolinium T1-weighted spin echo at ≤ 3mm slice thickness.

Table 2

PML Surveillance Brain MRI Protocol

<table>
<thead>
<tr>
<th>Field Strength</th>
<th>Scans should be of good quality, with adequate signal-noise ratio (SNR) and resolution (in slice pixel resolution of ≤ 1mm x 1mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Prescription</td>
<td>Use the subcallosal plane to prescribe or reformat axial oblique slices</td>
</tr>
<tr>
<td>Coverage</td>
<td>Whole brain coverage</td>
</tr>
<tr>
<td>Slice thickness and gap</td>
<td>≤ 3mm, no gap (for 2D acquisition or 3D reconstruction)</td>
</tr>
<tr>
<td>Sequences²</td>
<td>3D sagittal T2-weighted Fluid Attenuated Inversion Recovery (FLAIR)²</td>
</tr>
<tr>
<td></td>
<td>2D axial diffusion weighted imaging; DWI (5mm thick, no gap)</td>
</tr>
</tbody>
</table>

²If unable to do 3D acquisition, then 2D axial FLAIR at ≤ 3mm slice thickness
Table 3
Spinal Cord MRI PROTOCOL

<table>
<thead>
<tr>
<th>Field Strength</th>
<th>Scans should be of good quality, with adequate signal-to-noise ratio (SNR) and resolution (in slice pixel resolution of ≤1mm x 1mm) Closed magnets (large bore for claustrophobic patients) preferred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Cervical cord coverage</td>
</tr>
</tbody>
</table>
| Core Sequences | Sagittal T2
| | Sagittal Proton Density, STIR\(^5\) or PST1-IR\(^3\)
| | Axial T2 through lesions |
| Slice thickness and gap | Sagittal: ≤3mm, no gap
| | Axial: 5 mm, no gap |
| Optional sequences | Axial T2 through complete cervical cord
| | Gadolinium\(^4\) and post gadolinium sagittal T1
| | Sagittal T1 |

\(^1\)Thoracic and conus coverage recommended if symptoms localize to this region to rule out an alternate diagnosis
\(^2\)STIR (Short Tau Inversion Recovery)
\(^3\)Phase Sensitive T1 Inversion Recovery
\(^4\)Minimum 5-minute delay before obtaining post gadolinium T1. Additional gadolinium does not need to be given for a spinal cord MRI if it follows a contrast brain MRI study.

Table 4
Clinical guidelines for brain and spinal cord MRI in MS

Baseline studies for patients with a clinically isolated syndrome (CIS) and/or suspected MS:

- Brain MRI protocol with gadolinium at baseline, and
- Spinal cord MRI if transverse myelitis, insufficient features on brain MRI to support diagnosis, or age>40 with non-specific brain MRI findings
- A cervical cord MRI performed simultaneously with the brain MRI would be advantageous in the evaluation of patients with or without transverse myelitis and would reduce the number of patients requiring a subsequent MRI appointment
- Orbital MRI if severe optic neuritis with poor recovery

Timing of a follow-up brain MRI protocol for patients with a CIS and/or suspected MS to look for evidence of dissemination in time:

- 6-12 months for high risk CIS (e.g. ≥2 ovoid lesions on first MRI)
- 12-24 months for low risk CIS (i.e. normal brain MRI) and/or uncertain clinical syndrome with suspicious brain MRI features (e.g. radiologic isolated syndrome [RIS])

Timing of brain MRI protocol with gadolinium for patients with an established diagnosis of MS:

- No recent prior imaging available (e.g. patient with MS transferring to a new clinic)
- Postpartum to establish a new baseline
- Prior to starting or switching disease-modifying therapy
- Approximately 6 months after switching disease-modifying therapy to establish a new baseline on the new therapy
- Every 1-2 years while on disease-modifying therapy to assess for subclinical disease activity
- Unexpected clinical deterioration or reassessment of original diagnosis

NOTE: routine spinal cord follow-up not required unless syndrome is predominately recurrent transverse myelitis.

Timing of PML surveillance brain MRI protocol:

- Every 12 months for serum JC virus antibody negative patients
- Every 3-6 months for serum JC virus antibody positive patients and ≥18 months on natalizumab

NOTE: the brain MRI protocol for monitoring patients on disease-modifying therapies includes the PML surveillance protocol sequences.
Table 5

Recommendations for communication

The clinical requisition for brain MRI should include the following:

- Request the CMSC (Consortium of Multiple Sclerosis Centers) or standardized brain MRI protocol
- Indicate purpose of study:
 - Diagnostic study for CIS or MS (indicated date of symptom onset)
 - Treatment monitoring study (indicate if on disease-modifying therapy)
 - PML surveillance study (indicate if high or low risk)
 - Unexpected clinical decline or reassessment of diagnosis
- Date and location of most recent MRI study (encourage patient to bring a copy of outside images on portable media at time of MRI appointment)

The radiology report should include the following:

For a diagnostic MS study:

- Number of gadolinium enhancing T1 lesion number (e.g. 0, 1, 2, 3, 4, ≥5)
- Comparison with previous studies for the number of new T2 lesion number (e.g. 0, 1, 2, 3, 4, ≥5)
- The presence of juxtacortical (touching the cortex), periventricular (touching the ventricles), infratentorial or spinal cord lesions
- The report should avoid a summary statement like “McDonald diagnostic criteria met"
- The interpretation should indicate if findings are typical, atypical, or not consistent with MS, and should provide a differential diagnosis if appropriate

For a follow-up MS study:

- Number of gadolinium enhancing T1 lesion number (e.g. 0, 1, 2, 3, 4, ≥5)
- Comparison with previous studies for the number of new T2 lesion number (e.g. 0, 1, 2, 3, 4, ≥5)
- Qualitative assessment of:
 - Overall T2 lesion burden severity (e.g. mild, moderate, severe)
 - Comparison with previous studies for overall worsening of T2 lesion burden and atrophy

For a PML surveillance study:

- Comparison with previous studies for new T2 lesions, hyperintense lesions on DWI
- Presence of PML suspicious features