Regulation of CNS Autoimmunity

Francisco J. Quintana, Ph.D.

Center for Neurologic Diseases
Department of Neurology
Brigham and Women's Hospital
Harvard Medical School

Myelin is the target of the autoimmune response in Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE)

Frohman et al., N Engl J Med 354:94202
Peripheral Lymphoid Tissue

CD8+ Th1 Th17

APC

TGF-β (IL-6/IL-21/IL-1β) + IL-23

IL-12

INFLAMMATORY CELLS

Blood Brain Barrier

Central Nervous System

Axonal and myelin damage

Initiation of inflammatory cascade

TGF-β

Microglia / Dendritic cells

Treg

FoxP3+

Th3

IL-6

TNF-α

Tr1

Axonal and myelin damage

Initiation of inflammatory cascade

TGF-β

Microglia / Dendritic cells

TGF-β + IL-27

TGF-β

IL-10

Peripheral Lymphoid Tissue

Blood Brain Barrier

Central Nervous System

B cell

T cell

Th1

CD8+

Teff

Microglia / Dendritic cells

IL-10

IL-35

INFLAMMATORY CELLS

REGULATORY CELLS
Alterations in the balance between Tregs and Teffs play a central role in multiple sclerosis

IFN-β induces IL-27 expression and promotes the differentiation of Tr1 cells

Mitsdoerffer and Kuchroo 2009
IL-27 signaling and biological effects

Type 1 regulatory T (Tr1) cells

FoxP3- suppressive CD4+ T cells that produce IL-10.

IL-27 promotes the differentiation of Tr1 cells.

IL-21 is an autocrine growth factor for Tr1 cells.

c-Maf controls IL-10 production in Tr1 cells.
IL-27 promotes Tr1 cell differentiation via AHR signaling

- **Environment**
 - Pollutants
 - Diet
 - Commensal flora
- **AHR ligands**
- **AHR**
 - Association
 - Interaction
- **AHR/c-Maf complex**
- **pSTAT3**
- **IL-10 promoter**
- **IL-21 promoter**
- **IL-10**
- **IL-21**
- **Tr1 cell differentiation**

Dendritic cell

IL-27 produced by DCs promotes Tr1 cell differentiation

- **Dendritic cell**
- **IL-27**
- **Tr1 cell differentiation**

The receptor for IL-27 is expressed by DCs

IL-27RA mRNA Relative expression

pDC cDC

What are the autocrine effects of IL-27 signaling in DCs?

Effects on DCs?

Tr1 cell differentiation

Dendritic cell

T cell

IL-27

IL-27 modulates the APC function of DCs

DCs + MOG + 2D2 T cells

[Graphs showing CPM (x10^3), IFN-γ, IL-17, IL-10, and TGF-β levels in response to IL-27 and ecLPS treatment for Teffs and Tregs]

Generation of mice lacking IL-27RA expression in DCs

[Diagram showing the generation process from CD11c-DTR BM to WT or IL-27RA-KO DCs and the effect on T cell responses and EAE]

IL-27RA in DCs limits EAE development

Increased Teff activation by DCs from DC_{IL-27RA-KO} mice

IL-27 acts on cDCs in vivo to limit the development of encephalitogenic T cells and EAE.
Summary I

IL-27 signaling in cDCs decreases the differentiation of Th1 and Th17 cells while it boosts the differentiation of Tr1 and FoxP3+ CD4+ T cells.

IL-27 signaling in cDCs *in vivo* limits the development of encephalitogenic T cells and EAE.

Computational modeling of the transcriptional response of DCs to IL-27 identifies ENTPD1 (CD39)

(RNA expression + ChIPseq)

CD39: Degradation of extracellular ATP

IL-27 signaling in DCs regulates *Entpd1* (CD39) expression

In vitro

![Graph showing the relative expression of Entpd1 mRNA over time.](image)

In vivo

![Graph showing the relative expression of Entpd1 mRNA and CD39 in DCs.](image)

CD39 (ENTPD1) mediates the tolerogenic effects of IL-27 conditioned DCs

![Bar graph showing the CPM values for different conditions.](image)

DCs + MOG + Naïve 2D2 T cells

CD39 (ENTPD1) degrades extracellular ATP

Extracellular ATP produced by DCs activates the NLRP3 inflammasome in an autocrine manner

Does IL-27-induced CD39 regulate inflammasome activation in DCs?
IL-27-induced CD39 on DCs controls extracellular ATP

IL-27-induced CD39 controls NLRP3 activation

CD39 expression in DCs limits the encephalitogenic Th1 and Th17 T-cell response and the development of EAE.
Extracellular ATP produced by activated DCs acts on an autocrine manner to activate the NLRP3 inflammasome

IL-27 up-regulates ENTPD1 expression in DCs
DC-expressed ENTPD1 degrades extracellular ATP and reduces NLRP3 inflammasome activation

Can we exploit this pathway therapeutically?
Vaccination with IL-27-conditioned DCs suppresses EAE

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Maximum score</th>
<th>P value</th>
<th>Relapse rate</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>5</td>
<td>1.790 ± 0.86</td>
<td>—</td>
<td>3.5 ± 0.50</td>
<td>—</td>
</tr>
<tr>
<td>DC+IL-27</td>
<td>5</td>
<td>2.063 ± 0.83</td>
<td>NS</td>
<td>3.0 ± 0.74</td>
<td>NS</td>
</tr>
<tr>
<td>DC+PLP</td>
<td>5</td>
<td>2.012 ± 0.68</td>
<td>NS</td>
<td>2.8 ± 0.83</td>
<td>NS</td>
</tr>
<tr>
<td>DC+IL-27+PLP</td>
<td>5</td>
<td>1.203 ± 0.62</td>
<td>0.03</td>
<td>1.3 ± 0.27</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Vaccination with IL-27-conditioned DCs limits the encephalitogenic T-cell response

PLP (139-151)

PLP (178-191)

Vaccination with IL-27-conditioned DCs limits epitope spreading

Antigen microarrays

Summary II

- IL-27 signaling in DCs limits the effector T-cell response and CNS autoimmunity
- IL-27 up-regulates CD39 expression in DCs via STAT3
- The induction of CD39 expression in DCs by IL-27 decreases extracellular levels of ATP, reducing NLRP3 inflammasome activation and Teff differentiation
- Vaccination with IL-27-conditioned DCs halts established chronic EAE.
Transcriptional effects of IL-27 on DCs

AHR activation in DCs promotes the differentiation of regulatory T cells

Swiss Med Wkly. (2012); 142:w13592

Proc Natl Acad Sci USA 107, 19961-19966 (2010).
AHR activation induces tolerogenic DCs

DCs + MOG + Naive 2D2 T cells

Control
ITE

Targeting of AHR in DCs with Nanoparticles to co-deliver autoantigens and AHR agonists

PNAS 107, 20768-20773 (2010).
PNAS 107, 19961-19966 (2010).
Targeting of AHR in DCs with Nanoparticles to Co-deliver a myelin antigen and activate AHR signaling

Tolerogenic dendritic cells

Control of autoimmunity

Targeting of AHR in DCs with Nanoparticles to Co-deliver a myelin antigen and activate AHR signaling

Tolerogenic dendritic cells

Control of autoimmunity

PNAS 109, 11270-5 (2012)
Construction of NP containing MOG_{35-55} and ITE

PNAS 109, 11270-5 (2012)

NP_{ITE+MOG} suppress CNS inflammation in an experimental model of Multiple Sclerosis (EAE)

PNAS 109, 11270-5 (2012)
EAE inhibition by NP_{ITE+MOG} is mediated by AHR in DCs

Summary III

1- AHR controls the APC function of DCs.

2- NP_{ITE+ANTIGEN} induces tolerogenic DCs that favor Treg generation.

3- NP_{ITE+ANTIGEN} suppress the development of EAE and T1D.
Acknowledgments

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lionel Apetoh</td>
<td>BWH</td>
</tr>
<tr>
<td>Caroline Pot</td>
<td>Vijay Kuchroo</td>
</tr>
<tr>
<td>Ada Yeste</td>
<td>Scott Snapper</td>
</tr>
<tr>
<td>Ivan Mascanfroni</td>
<td>Howard Weiner</td>
</tr>
<tr>
<td>Jessica Kenison</td>
<td>Josh Korzenik</td>
</tr>
<tr>
<td>Evan Burns</td>
<td>BIDMC</td>
</tr>
<tr>
<td>Meghan Nadeau</td>
<td>Simon Robson</td>
</tr>
<tr>
<td>Ann-Marcia Tukpah</td>
<td>HSPH</td>
</tr>
<tr>
<td>Bonny Patel</td>
<td>Russ Hauser</td>
</tr>
<tr>
<td>Deepak Kumar</td>
<td>BIU</td>
</tr>
<tr>
<td>Chuan Wu</td>
<td>Sol Efroni</td>
</tr>
<tr>
<td>Lior Mayo</td>
<td></td>
</tr>
<tr>
<td>Maisa Takenaka</td>
<td></td>
</tr>
<tr>
<td>Yan Wu</td>
<td></td>
</tr>
</tbody>
</table>

fquintana@rics.bwh.harvard.edu

http://brighamandwomens.org/research/labs/quintana/default.aspx