Rehabilitation for the Older Adult with MS

Christina Burke, PT, DPT, NCS
Stony Brook University
South Shore Neurologic Assoc

Objectives

- Identify physical changes seen with aging
- Appreciate the need for future clinical research for the aging adult with MS
- Identify fall risk factors of older pwMS
- Identify treatment strategies for patients focused on the elements of their balance deficits
- Present video case studies to best promote clinical application of these concepts
Aging and MS

- 50% of individuals live over 30 yrs after MS diagnosis. ref: Gray
- 45% of people with MS (pwMS) are over 55 y/o ref: Minden
- However aging with MS remains an understudied area
- Possibly due to complicated nature of differentiating age-related vs MS-related processes

Aging with MS

- The clinical course of MS and neurological symptoms are age related. ref: Trojano
- Symptoms such as gait disability, B&B dysfunction and cognitive decline do increase in prevalence and severity as a function of disease duration
- 65% of pwMS are still walking after 20 yrs ref: Shapiro
- 50% will need an assistive device to ambulate within 10 years of diagnosis. ref: Weinshenker
Changes seen with normal aging

- Loss of muscle mass (sarcopenia) due mostly to a decline in # of MM fibers
- Slowed conduction velocity of NS due to age-associated loss of motor neurons
- Reduced cardiopulmonary reserve
- Impaired temperature regulation
- Increase in co-activation of antagonist MM during voluntary contraction

Benefits of Exercise for individuals with MS

- Improvement of function while lessening disability
- Enhancing quality of life
- Improvement in muscle power & exercise tolerance
- Improvement in emotional mood
- No adverse effects on fatigue

Limited research on effect of exercise with older individuals with MS
Inactivity in MS vs Axonal Loss

- Much of the weakness and lack of cardiorespiratory fitness noted in MS is caused by inactivity and disuse rather than primary effects of the disease. Reference: Tantucci, Kent-Braun, Sandoral.

- Impairments from disease process (demyelination & axonal degeneration) are probably not reversible with exercise. Impairments from deconditioning probably are reversible.

Who is exercising?

- An alarming rate of physical inactivity among older adults, particularly those aging with a disability. Reference: Motl.

- Canadian survey:
 - Older adults with MS were less likely to engage in regular activity (26.7%) vs older Canadians (45.2%)
 - Mean age: 64.6 yrs/old
 - Average length of diagnosis: 32.9 yrs (ref: Ploughman)
Who is exercising?

Older Adults with MS 55 – 75 y/o

- Exercise regularly: 18%
- Exercises sporadically: 38%
- No exercise: 44%

n=48

Younger Adults with MS 18 – 54 y/o

- Exercise regularly: 20%
- Exercises sporadically: 48%
- No exercise: 32%

n=117

Types of Exercise

Types of Exercise with Older pwMS

- Walking: 34%
- Resistance exercise: 15%
- Treadmill: 15%
- Swim: 12%
- Stretching: 10%
- Bike: 7%
- Other: 7%
Challenges to exercise for older pwMS

- Fatigue: 38%
- Weakness: 15%
- Time restraints: 12%
- Pain: 12%
- Other: 12%
- Not sure what kind of exercise to do: 8%

Recommendations for Exercise Prescription

- Exercise sessions should involve discontinuous work, carefully balancing exercise with adequate rest periods.
- Precautions should be taken to prevent the deleterious effects of overwork, monitor the effects of fatigue and manage core body temperatures.
- Functional training activities can be used to promote strength and functional endurance.
Fall Risk Factors for Older Adults and Individuals with MS

Community dwelling older adults ref: Rubenstein

<table>
<thead>
<tr>
<th>Hx of previous falls</th>
<th>Individuals with MS ref: Cattaneo 2012</th>
<th>Older adults with MS ref: Finlayson 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of an assistive device</td>
<td>Fear of falling</td>
<td></td>
</tr>
<tr>
<td>Balance & gait deficits</td>
<td>Balance & gait deficits</td>
<td>Balance & gait deficits</td>
</tr>
<tr>
<td>Visual impairments</td>
<td>Deteriorating MS status</td>
<td></td>
</tr>
<tr>
<td>Medications</td>
<td>Incontinence of bladder</td>
<td></td>
</tr>
<tr>
<td>Cognitive deficits</td>
<td>Poor concentration</td>
<td></td>
</tr>
<tr>
<td>Use of an assistive device</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Many of the symptoms of MS are consistent with fall risk factors among community-dwelling older adults.

Fall Prevalence Rates

- Community dwelling older adults: 30% fall/year ref: Hausdoff
- A study by Finlayson (2006) found that of pwMS aged 45-90 yrs old, 52% experienced a fall in last 6 months.
- Another study found 64% of pwMS ages 55-94 years old reports at least 2 falls per year. ref: Peterson 2008
Interventions to Reduce Fall Risk in MS

- Sensory Integration
- Perturbation-based balance training
- Core strengthening through Pilates
- Drop-foot stimulator
- Locomotion training

Sensory Integration

- The CNS processes multiple sensory inputs concurrently and modulates the central gain of sensory systems
- pwMS frequently have impairments in peripheral systems as well as involvement in primary regulators of central sensory integrations
Reactive Balance Training in Older Adults

- Balance training programs may achieve greater fall reduction by targeting specific aspects of balance control that are more directly related to specific balance systems.
- Perturbation-based balance training is an intervention that incorporates exposure to repeated postural perturbation to evoke rapid balance reactions.
- Research has shown the “faller” require more steps to recover balance vs “non-fallers” during perturbation. Ref: Maki
- “Fallers” are more reliant than “nonfallers” on using arm reactions.

Reactive Balance Training in pwMS

- Although the causes of falls are complex, it is ultimately the ability to respond effectively to a sudden, unexpected balance perturbation that determines whether a fall occurs. Ref: Maki
- Trips/slips while walking accounted for 48% of falls in MS. Ref: Shumway-Cook 2011
- pwMS have balance impairments characterized by delayed responses to postural perturbation. Ref: Cameron
Compensatory Step Training

Unsuccessful stepping

Compensated step

Functional Electric Stimulation for Foot Drop

- Drop foot stimulator showed improved functional mobility and was associated with fewer falls in pwMS. ref: Esnouf
Case Study

- RB a 62 y/o male with secondary progressive MS who was referred to clinic for a Walkaide trial and balance retraining.
- Meds: betaseron, ampyra
- CC: fatigue, foot drag and falls, currently uses a toe strap.
- Fall hx: 1 x/3 mos

Clinical Assessment:
- Left LE weakness: hip flexors 3, pf 2, df trace
- PROM: left ankle df lacks 5 deg from neutral
- Sensation: impaired vibration to 3 sec, mildly impaired position sense.

Functional Assessment:
- Velocity: 48.9 cm/sec on Gaitrite using str cane
- 6MWT 500 ft with 10 toe drags with cane & toe strap
- (norm 1876 ft)
- ABC 17%
- TUG: 16 sec with cane
Case Study

- Interventions:
 - Gait training using Walkaide device
 - Interval TM training with cooling device during rests
 - Dynamic gait training (obstacles, head turns, multidirections)
 - Perturbation-based balance training
 - LE functional strengthening

Case Study

- Clinical Assessment:
 - Left LE weakness: hip flexors 3/5, pf 2, df trace hip 3+ pf 3
 - PROM: left ankle df lacks 5 deg from neutral, ankle to neutral
 - Sensation: impaired vibration to 3 sec, mildly impaired position sense.

- Functional Assessment:
 - Velocity: 48.9 cm/sec 64.6 cm/sec
 - 6MWT 500 ft with 10 toe drags with cane & toe strap 650 ft. with walkaide and no toe drags
 - ABC 17% 53%
 - TUG: 16 sec with cane 13 sec
 - No falls during 2 month period
Although the scientific evidence on the benefits of Pilates is not sufficient, there is an increasing interest towards Pilates in pwMS.

Recent study following an 8 week mat Pilates program, with individuals with EDSS score of 4 -6.5 showed significant improvements in ABC scale, Berg Balance test, TUG and muscle strength.

ref: Guclu-Gunduz
Locomotion Training

- LT using treadmill training with body weight support (BWS) has been focus of increasing attention due to work with SCI population.

- In studies involving persons with MS using LT and BWS, improvements in MM strength, spasticity, endurance, balance, walking speed & QoL have been reported ref Glesser, Mansour
References:

- Minden SL, Multiple Sclerosis: A Statistical Portrait; Cambridge, MA 1993
- Trojano M, Age-related disability in MS, Ann Neurol 2002;51:475-80
- Stern M, Aging with MS, Phys Med Rehabil Clin N Am 2010; 403-17
- Sandoral
- Ploughman M, The Canadian survey of health, lifestyle and ageing with multiple sclerosis: methodology and initial results, BMJ Open;2014;4(6)
- Liu D, Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial. Phys Ther;2010;90:176

References:

- Cattaneo D, Risks of falls in subjects with MS, Arch Phys Med Rehabil; 2002; 83:864-7
- Finlayson ML, Risk factors for falling among people with MS aged 45-90 Arch Phys Med Rehabil 2006;87:1274-9
- Hausdoff JM, Gait variability and fall risk in community-living older adults Arch Phys Med Rehab 2001;82:1050-6
- Peterson EW, Injurious falls among middle ages and older adults with MS, Arch Phys Med Rehab 2008; 89
- Maki BE, Control of rapid limb movement for balance recovery: do age-related changes predict falling risk?, Control of Posture and Gait; Maastricht, the Netherlands: International Society for Posture and Gait Research; 2001: 126-129
- Shumway-Cook
- Cameron Postural control in MS, Curr Neurol Neurosci Rep 2010;10(5):407-12
- Essouf IE, Impact on activities of daily living using an FES device to improve dropped foot in people with MS Mult Scler 2010;16:1144-7
- Guclu-Gunduz, The effects of plates on balance, mobility and strength in patients with MS NeuroRehabil 2014;34:337-42
O’Connor P, Key issues in diagnosis and treatment of multiple sclerosis, an overview, Neurology 2002;24:58:51-53

Karpatkin H, Multiple sclerosis and exercise; a review of the evidence, Int J MS Care;2005:7;36-41

Herbert JR The association between multiple sclerosis-related fatigue and balance as a function of central sensory integration, Gait & Balance 2013;26:67-72

Buchanan R, Age-related comparison of people with multiple sclerosis: Demographic, disease and treatment characteristics; 2009;25;271-78

Mansfield A, Effect of a perturbation-based balance training program on compensatory stepping and grasping reaction in older adults, a randomized controlled trial, Phys Ther 2010:90:476-491

Grazio, Risk factors for falls in MS, Mult Scler 1, 2013; 19

Kasser S, Understanding and treating balance impairment in multiple sclerosis, JCOM J 2014; 21(9): 419