EDMI Baseline Calibration Field Steps
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail. This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 1 of 12

☐ Park Safely

☐ Wear Safety Apparel
☐ Observe All Safety Regulations / Stay Alert!

☐ Respect Other Surveyors Utilizing Baseline
 ☐ Offer Assistance If Appropriate
☐ Verify Radios / Phones / Misc. Equip. Operational
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail.
This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Record Field Constant Data
- Date
- EDMI:
 - Model & Manufacturer
 - Serial Number
 - Specified Vertical Circular Accuracy
 - Ex: 6 arc second
 - Specified EDMI Accuracy
 - Ex: +/- (5mm + 5 PPM)
- CBL Name & Location
- Constant Field Abnormalities or Comments

EDMI CALIBRATION BASELINE DATA FORM

SECTION 1:
- Firm:
- Telephone No.: ()
- Date:
- Instrument:
- Serial No.:

SECTION 2:
- Occupied Station:
- Observed Station:

SECTION 3:
- Calibrating Baseline:
 - Instrument Operator:
 - Note Keeper:
 - Location:
 - Weather:
 - Z.A.: Direct:
 - Actual/Relative
 - Temperature:
 - Humidity:
 - Instrument Settings:
 - Z.A. Offset:
 - Computed Inst.
 - Inst. Constant:

SECTION 4:
- From Station:
 - Sta. Elev.: [m] [ft]
 - Published Diff. in Elev.:
 - Height of Instrument:
 - Field Diff. in Elevation:
 - Calculated Difference:
- To Station:
 - Sta. Elev.: [m] [ft]
 - (Z.A. Inst. Precision) [Segment]:
 - Height of Pelm or Target:
 - (Z.A. Inst. Precision) [Segment]:

SECTION 5:
- Observation Group No. 1 (Direct):
 - Slant Distance (mi):
 - Horizontal Distance (mi):
 - Vert. Height Diff. (mi):
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - 6.
 - 7.
 - 8.
 - 9.
- Observation Group No. 2 (Reversed):
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - 6.
 - 7.
 - 8.
 - 9.

SECTION 6:
- Mean Horizontal Distance:
- Horizontal Distance:
- Adjusted Field Distance:
- Sigma Value:
- High/Low Spread:
- Number of Rejections:

SECTION 7:
I hereby acknowledge, as witnessed by my signature and embossed seal, that I have personally compared my EDMI in accordance with the laws of the State of New Jersey and I shall apply the appropriate linear corrections to the EDMI measurements observed with this instrument.

N.J. Professional Land Surveyor/License No. [Signature]

SEAL

Form: NJSA 52:14B:8.94

JAMES A. KUHTA VER. 01, 2006
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail. This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 3 of 12

- Prism @ 150.0 (m) Monument
 - Properly set-up and level
 - Record Prism Height (ft & mm)
 - Record Prism Offset (mm)
 - Note: prism offset should remain constant
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail.
This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 4 of 12

☐ EDMI @ 0.0 (m) Monument
 o Position Tripod / Affix EDMI
 o Position Parasol
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail.
This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 5 of 12

- Properly Level EDMI
 - Verify 360 (deg) Plumb w/Monument
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail.
This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 6 of 12

- Record EDMI Height (ft & mm)

- Acclimate EDMI (per manufacture’s recommendations)
 - NOTE: once acclimated EDMI should remain so throughout calibration, however if EDMI is moved between set-ups in a vehicle utilizing AC / Heater than reasonable acclimation time must be allocated at each set-up

☐ Record Specific Data (unique for each completed Baseline Data Form)

- Occupied Station / Observed Station
- EDMI Operator / Note Keeper
- Local Time (Watch / Cell Phone)
 - 202-762-1401 & 202-762-1069
- Weather (Weather Radio / Internet / Text Messaging Service)
 - Temperature
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail. This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 7 of 12

- Record at EDMI height (after acclimation)
 - Barometric Pressure
 - P.P.M. Set at
 - Wind Speed / Direction
 - Humidity

 NOTE: Set the EDMI to match this Meteorological data!

- Zenith Angle Check
 - 1 Direct
 - 1 Reverse

- Instrument Settings
 - Instrument Constant Set to

- Specific Field Abnormalities and Comments

☐ Record Elevations
 - From (Station #)
 - To (Station #)

☐ Make & Record Independent Observations
 - Record Independent Distance Observations
 - After each Direct and Reverse single observation, the EDMI must:
 - Be removed from the Tribrach
 - Reattached to Tribrach
 - Properly Releveled for use

James A. Kuhta VER. 01, 2006
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail.
This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 8 of 12

- 5 Direct (Slope Dist., Horiz. Dist. & Vert. Height Diff.)

- 5 Reverse (Slope Dist., Horiz. Dist. & Vert. Height Diff.)
EDMI Baseline Calibration Field Steps

NOTE: Adjust this document for the location, conditions and equipment which prevail.
This example based on the Passaic CBL (2006) and the Skillman CBL (2005)

Page 9 of 12

NOTE: Repeat above steps as necessary at each monument.

Remember: Each set of observations from any station to any other station, requires you to complete a separate N.J. EDMI Calibration Baseline Data Form for verifiable submittal.

An additional continuous company private logbook, “...provides a history of the instrument that may be used later either to isolate changes in instrument characteristics or for legal verification purposes.”

Using: 3 Tripods & 3 Tribachs (example)

Order of Observations:

<table>
<thead>
<tr>
<th>EDMI</th>
<th>Prism1</th>
<th>Prism2</th>
<th>Notes</th>
<th>Obs. From - To</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0m</td>
<td></td>
<td>400.0 m</td>
<td></td>
<td>0.0 m – 400.0 m</td>
</tr>
<tr>
<td>0.0 m</td>
<td>150.0 m</td>
<td>1000.0 m</td>
<td>Move Prism2 w/Tripod to</td>
<td>0.0 m – 150.0.0 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Remove Prism1 from Tribach</td>
<td></td>
</tr>
<tr>
<td>0.0 m</td>
<td></td>
<td>1000.0 m</td>
<td></td>
<td>0.0 m – 1000.0 m</td>
</tr>
<tr>
<td>Swap EDMI w/Prism1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td></td>
<td>150.0 m -0.0 m</td>
</tr>
<tr>
<td>150.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td></td>
<td>150.0 m – 1000.0 m</td>
</tr>
<tr>
<td></td>
<td>Move Prism1 w/Tripod to 400.0 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.0 m</td>
<td>400.0 m</td>
<td>1000.0 m</td>
<td>Prism2 Reversed</td>
<td>150.0 m – 400.0 m</td>
</tr>
<tr>
<td>Swap EDMI w/Prism1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.0 m</td>
<td>150.0 m</td>
<td>1000.0 m</td>
<td></td>
<td>400.0 m – 150.0 m</td>
</tr>
<tr>
<td></td>
<td>Move Prism1 w/Tripod to 0.0 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td></td>
<td>400.0 m – 1000.0 m</td>
</tr>
<tr>
<td>400.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td></td>
<td>400.0 m – 0.0 m</td>
</tr>
<tr>
<td>Swap EDMI w/Prism2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.0 m</td>
<td>0.0 m</td>
<td>400.0 m</td>
<td>Prism1 Reversed</td>
<td>1000.0 m – 400.0 m</td>
</tr>
<tr>
<td></td>
<td>Move Prism 2 w/Tripod to 150.0 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.0 m</td>
<td>0.0 m</td>
<td>150.0 m</td>
<td>Prism1 Reversed</td>
<td>1000.0 m – 150.0 m</td>
</tr>
<tr>
<td></td>
<td>Breakdown Prism2</td>
<td></td>
<td></td>
<td>Prism1 Forward</td>
</tr>
<tr>
<td>1000.0 m</td>
<td>0.0 m</td>
<td></td>
<td></td>
<td>1000.0 m – 0.0 m</td>
</tr>
</tbody>
</table>

James A. Kuhta Ver. 01, 2006
Using: 1 Tripod w/Tribach & 2 Prism Poles w/BiPods(example)

Order of Observations:

<table>
<thead>
<tr>
<th>EDMI</th>
<th>Prism1</th>
<th>Prism2</th>
<th>Notes</th>
<th>Obs. From – To</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 m</td>
<td></td>
<td>400.0 m</td>
<td></td>
<td>0.0 m – 400.0 m</td>
</tr>
<tr>
<td>150.0 m</td>
<td>Move Prism2 to 1000.0 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 m</td>
<td>150.0 m</td>
<td>1000.0 m</td>
<td>Prism2 Reversed</td>
<td>0.0 m – 150.0 m</td>
</tr>
<tr>
<td>Remove Prism1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 m</td>
<td>1000.0 m</td>
<td>Prism2 Forward</td>
<td>0.0 m – 1000.0 m</td>
<td></td>
</tr>
<tr>
<td>Move EDMI w/Tripod to 400.0 m</td>
<td>Replace Prism1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.0 m</td>
<td>150.0 m</td>
<td>1000.0 m</td>
<td>400.0 m – 150.0 m</td>
<td></td>
</tr>
<tr>
<td>400.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td>400.0 m – 1000.0 m</td>
<td></td>
</tr>
<tr>
<td>400.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td>400.0 m – 0.0 m</td>
<td></td>
</tr>
<tr>
<td>Move EDMI w/Tripod to 150.0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td>150.0 m – 1000.0 m</td>
<td></td>
</tr>
<tr>
<td>Move Prism2 to 400.0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.0 m</td>
<td>0.0 m</td>
<td>400.0 m</td>
<td>150.0 m – 0.0 m</td>
<td></td>
</tr>
<tr>
<td>150.0 m</td>
<td>0.0 m</td>
<td>400.0 m</td>
<td>150.0 m – 400.0 m</td>
<td></td>
</tr>
<tr>
<td>Move EDMI w/Tripod to 1000.0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.0 m</td>
<td>0.0 m</td>
<td>400.0 m</td>
<td>Prism1 Reversed</td>
<td>1000.0 m – 400.0 m</td>
</tr>
<tr>
<td>Breakdown Prism2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.0 m</td>
<td>0.0 m</td>
<td>1000.0 m</td>
<td>1000.0 – 0.0 m</td>
<td></td>
</tr>
<tr>
<td>Move Prism 1 to 150.0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.0 m</td>
<td>150.0 m</td>
<td></td>
<td>1000.0 m – 150.0 m</td>
<td></td>
</tr>
</tbody>
</table>