INTRODUCTION TO GIS

Introduction

• GIS -
• GIS –
• GIS –
What is a GIS

- Geographic
 - of or relating to geography
 - the study of the physical features of the earth, its atmosphere, and of human activity as it affects and is affected by these

- Information
 - knowledge gained through study, communication, research, instruction, etc.

- System
 - a set of connected things or parts forming a complex whole
 - a set of principles or procedures according to which something is done; an organized scheme or method.

wikipedia
What is a GIS

• Spatial Data
 – Data that has inherent geographic or locational component to it
 • Coordinates of a corner
 • Zip codes
 • Boundaries
 • Area codes

• Non Spatial Data
 – Data without a geographic or locational component to it
 – Many times we can associate this data with Spatial Data
 • Iron Pipe located at a corner
 • +4 of a zip code
 • County
 • Line number for a phone
Some GIS Terminology

- Map
 - An all encompassing term
- Features
 - Items that make up the map
- Layers
 - Like Features are organized into individual layers
- Attributes
 - The non spatial data describing the features

Geospatial Data

- How data is organized in GIS software packages
 - Information in a map is usually divided into like themes or layers
 - Each layer is saved as an individual File
 - (ignoring geodatabases)
 - Example layers
 - Roads, Rivers, Lakes, Land use
- All layers fall within 1 of two types of Spatial Data models
Spatial Data Models

• Two general types of Spatial Data utilized by GIS packages
 – Vector
 • Points, lines, polygons
 • 0,1,2 dimensions respectively
 – Raster
 • A grid of cells or pixels
 • 2 dimensional
 • Represents an area

Spatial Data Models

• Vector Spatial Data Model Types
 – Points
 – Lines
 • Made up of at least 2 connected points
 – Polygons
 • Note, polygons must close
 – No single data layer can contain more than 1 of the above vector types
 – Point is the primitive unit
 • Can not be broken down further and still be vector
Spatial Data Models

- Vector Spatial Data Model
 - Topology
 - Spatial relationship between features and how they connect to one another
 - Important for any networks
 - Utilities
 - Roads
 - Separates a line from a polygon
 - Different file types have different levels of Topology (more on this later)
Spatial Data Models

• Vector Spatial Data Model
 – Attributes
 • An unlimited number of attributes allowed for each feature
 • Like attributes are organized into columns in the Attribute table
 – Simple to add new columns (fields)
 – Type of column defines what you can do with it
 • Each layer has its own Attribute Table

Spatial Data Models

• Vector Spatial Data Model
 – Attribute Table
 • Each feature’s attributes arranged into a single row in the table
 – 1 Feature = 1 Row in the attribute table
 • Columns types (like attributes) are defined when created
 – String
 – Float
 – Integer
 – Blob
Spatial Data Models

• Raster
 – A grid of pixels or cells representing an area
 • Each cell in the raster represents an area
 – Every pixel contains a single numerical value
 – Raster can have only 1 type of attribute
 • Elevation
 • Concentration
 • Land cover
 • -etc
Spatial Data Models

• Raster
 – Never any gaps in the raster
 – May be referred to as a surface
 – Simple, innate topology
 – Very useful for modeling
Spatial Data Models

• Raster
 – Values in raster cells are **always** numbers
 – Values may function as codes depending on the data the raster represents
 • Example landcover:
 – 21: Developed, Open Space
 – 22: Developed, Low Intensity
 – 23: Developed, Medium Intensity
 – 41: Hardwood forest
 – 90: Wetlands
 – Codes *should* be defined in the metadata

Spatial Data Models

• Raster
 – Imagery is usually comprised of multiple rasters
 • True color –
 – 1 raster storing brightness values for Red
 – 1 raster storing brightness values for Blue
 – 1 raster storing brightness values for Green
 • False color –
 – 1 raster storing brightness values for Near Infrared
 – 1 raster storing brightness values for Red
 – 1 raster storing brightness values for Green
Spatial Data Models
Spatial Data Models

• Raster
 – Landsat has 8 bands (1 raster for each band)
 – Hyperspectral imagery comprised of 200+ rasters

Spatial Data Models

• While Vector and Raster Data can be used in a map, they can not interact with each other
 – There’s always exceptions

• To combine data from one type with another one must convert
 – Vector -> Raster = Rasterization
 – Raster -> Vector = Vectorization
Common File Types

• Raster File Types
 – Tiff
 – IMG
 – GRID

• Vector File Types
 – Shapefiles
 – Coverages
 – Geodatabases
Common File Types

• Raster File Types
 • Not as common
 – JP2000 becoming more common for imagery
 • Highly compressed
 – May affect image quality
 – GRID – ESRI raster format
 • Complicated file structure
 • Fairly common
 • Somewhat compressed
 • Usually imports without issues

Common File Types

• Raster File Types
 – Many - many more
 • BIL
 • MrSID
 • DRG
 • BMP
 • RST
 • ...
 • ASCII
Common File Types

• Raster File Types
 – World File
 • OK, not really a raster
 • Used to georeference some rasters
 – *.tif and *.jpg most common
 • Simple text file accompanying the raster
 – *.tfw or *.jpw

Common File Types

• Vector File Types
 – Shapefile
 • Open format
 • Very Common
 • Poor Topology
 • Made up of multiple files
 – Not all are necessary
 • Must have these three
 – *.shp
 – *.dbf
 – *.shx
Shapefiles File Types

- .sbn and .sbx—The files that store the spatial index of the features.
- .fbn and .fbx—The files that store the spatial index of the features for shapefiles that are read-only.
- .ain and .aih—The files that store the attribute index of the active fields in a table or a theme’s attribute table.
- .atx—An .atx file is created for each shapefile or dBASE attribute index created in ArcCatalog. ArcView 3.x attribute indexes for shapefiles and
- .ixs and .mxs—Geocoding index for read/write shapefiles.
- .prj—The file that stores the coordinate system information (used by ArcGIS).
- .xml—Metadata for ArcGIS—Stores information about the shapefile.

Common File Types

- Vector File Types
 – Coverages
 • ESRI proprietary format
 • Fairly uncommon anymore
 • Excellent Topology
 • Complicated file structure
 • Difficult to use in most software
 • Strict rules for naming
Common File Types

• Vector File Types
 – ESRI export format *.e00
 • A safe way to move a coverage layer
 • More likely to find this than coverage itself
 • Has to be converted back to a coverage to be used
 • Essentially a giant text file

• Vector File Types
 – Geodatabase
 • Introduced by ESRI
 • Importing to other software can be a problem
 • Can store multiple layers
 • Topology is dependent on the user
 • Personal Geodatabase
 – Microsoft Access format *.mdb
Database Applications

• In order for a piece of software be termed a GIS package it requires a database management system
 – Connection must be made between spatial features and associated non spatial data

• An example: Shapefiles
 – *.shp – Feature geometry and Identifier
 – *.dbf – non spatial data – the attribute table

Database Applications

• Making the connections between shapes and data
 – ID field
 • Key field
 • Not editable in Software
 • Never use for a Join*
 • Types
 – PID
 – FID
 – OID
Database Applications

• Some Terminology
 – Fields – Columns
 – Tables – Relations
 – Joins – Relationships
 – Query – Subsetting attributes
 – SQL – Structured Query Language

• Joins
 – Connecting multiple tables through like attributes
 – Reduces redundancies
 – Types
 • 1 : 1
 • 1 : many
 • Many : 1
 • Many : many
Database Applications

- Joins

{Database image}

Database Applications

- Joins

{Database image}
Database Applications

• Joins

Applications

• Spatial Query
 – Locating features from one layer based upon their spatial relationship to features in another layer
 • Distance
 • Intersection
 • Contains
Applications

• Topography to Raster
 – Converting individual elevation points or contours to a raster

• Networks
 – Topology is very important
 • What is connected to what?
 • Direction
 • Timing
Applications

- Networks

Applications

- Record Keeping
Applications

• Aspect and Slope from a DEM
 – Aspect and Slope
 • Rate of change in X and Y directions determined for each cell based upon input elevation of the surrounding cells
 – Slope
 • $rise_run = \sqrt{\left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2}$
 – Aspect
 • $aspect = 57.29578 \times \arctan2\left(\frac{dz}{dy}, -\frac{dz}{dx}\right)$
Applications

- Reclass
 - Also referred to as Recoding
 - Changing some or all of the values in a raster to new values
 - Remember, has to be numbers since it is a raster
Applications

• Simple Hydrologic Analysis
 – Flow Accumulation
 – Flow Direction
 – Watershed Delineation
Applications

• GIS 335
Class Project
Applications

• Georeferencing
 – Establishing the location of a 2d or 3d object in real space
 • Giving real world coordinates to something that doesn’t have it
 – 1855 Map of Erie County
 • Medium 1 map ; 125 x 93 cm
 • Call Number G3803.E6 1855 .G4
 • Library of Congress Geography and Map Division
 • Digital Id g3803e.la000494
 • http://hdl.loc.gov/loc.gmd/g3803e.la000494 Library of Congress Catalog Number 2012593658

Metadata

• Data about data
 – Incredibly Important
 – Should be included with all data
 – Often overlooked by GISers
 – Something surveying community has all over GISers
Metadata

• Data about data
 – Attributes
 – Coordinate systems
 – How data was collected/created
 – Accuracies
 • Positional
 • Attributes
 – Point of contact
 – ...

Metadata

• Standards
 – FGDC
 • Content Standards for Digital Geospatial Metadata
 – CSDGM
 • International Organization for Standardization
 – ISO 19115-1:2014
Metadata

• Examples
 – CUGIR – Tompkins Building Outlines
 – Maine GIS – Conserved Lands (10/28/2014)
 – Click USGS – NJ Lidar

Questions?

• Russ Aicher
 - Assistant Professor
 - Survey Technology Program Coordinator
 - Paul Smith’s College
 - 518-327-6950
 - raicher@paulsmiths.edu