Cirrhosis and Hepatorenal Syndrome

Chris Droege, Pharm.D.
Clinical Pharmacy Specialist, Critical Care
UC Health – The University of Cincinnati Medical Center

The author has no conflicts of interests to disclose on this topic.

Presentation Objectives
- Define pathophysiology, causes, and complications of liver cirrhosis
- List hepatorenal syndrome (HRS) diagnostic criteria
- Discuss potential HRS prevention mechanisms
- Identify HRS treatment goals and strategies
- Evaluate literature describing therapeutic alternatives used to treat HRS
Liver Anatomy and Function

- Blood flows from portal branch into sinusoidal space
- Hepatocytes remove toxins from blood
- Detoxified blood flows out of sinusoid via hepatic venule
- Hepatic vein empties blood into vena cava

Liver Anatomy and Function

Cirrhosis – Pathophysiology

- Cascade beginning with hepatocellular injury
- Wound healing response
 - Inflammatory response
 - Chronic and abnormal collagen secretion
- Hepatic fibrosis and nodule formation
- Decreased metabolic and synthetic function

http://www.arizonatransplant.com/healthtopics/liver.html

Hepatocellular Injury and Resistance

- Stellate cells transform to resemble fibroblasts
- Fibrin deposition into sinusoids
- Blood flow resistance in hepatic lobules
- Changes in vasodilation and vasoconstriction mediation within liver
- Permanent hepatic scarring

Cirrhosis – Etiologies

- Alcohol abuse
- Chronic viral hepatitis
- Metabolic liver disease
 - Non-alcoholic steatohepatitis
 - Wilson’s disease
- Cholestatic liver disease
 - Primary sclerosing cholangitis
 - Primary biliary cirrhosis
- Exogenous toxins

Cirrhosis – Complications

Spontaneous bacterial peritonitis

- Translocation of enteric aerobic bacteria from gastrointestinal tract to the peritoneal cavity
- Potential pathogens
 - Enterobacteriaceae
 - Escherichia coli, Klebsiella pneumoniae
 - Streptococcus spp.
 - Anaerobes
 - Prophylactic and empiric therapy with third generation cephalosporins, fluoroquinolones, or sulfas
Cirrhosis – Complications

Hepatic encephalopathy
- Neurologic symptoms and altered mental status
- Accumulation of nitrogenous substances from gut flora cause alterations in neurotransmission
- Treat by lowering ammonia levels
 - Lactulose
 - Rifaximin
 - Metronidazole

Cirrhosis – Complications

Coagulopathy
- Hepatocyte dysfunction leads to decreased clotting factor and fibrinogen synthesis
- Fibrinolysis
- Disseminated intravascular coagulation
- Platelet dysfunction

Cirrhosis - Complications

Portal hypertension
- Build up of fibrous tissue in liver causes increased resistance to perfusion
- Loss of regulation of vasoregulatory substances
- Leads to other complications
 - Esophageal and gastric varices
 - Ascites
 - Hepatopulmonary syndrome
 - Hepatorenal syndrome
Hepatorenal Syndrome

- Incidence
 - Nearly one in every five patients with cirrhosis and ascites develop HRS within one year
 - 39% develop HRS within five years
 - As high as 48% in patients awaiting transplant
- Poor prognosis
- Complex pathophysiology

Historical Perspective

- GFR decreases in parallel with decreased renal perfusion. Suggestion that splanchnic bed is dilated
- Kidneys from HRS patients regain normal function when transplanted
- Circulatory dysfunction due to arterial vasodilation, not hypovolemia
-未来 targets identified 2013-7

Pathophysiology

- Intense renal vasoconstriction
 - Displays progression with worsening liver disease
- Four interrelated pathways
 - Peripheral vasodilation
 - Hyperdynamic circulation; subsequent renal vasoconstriction
 - Stimulation of renal sympathetic nervous system (SNS)
 - Cardiac dysfunction
 - Circulatory derangements and inflammatory cytokines acting upon renal circulation and other vascular beds
Peripheral Vasodilation

- Decrease in effective circulating volume
- Increased splanchnic blood pooling
- Profound vasodilator upregulation
- Unloads high-pressure baroreceptors
- SNS activation; renin-angiotensin-aldosterone system (RAAS) activation; nonsomotic vasopressin release
- Hyperdynamic circulation
- Compensatory vasoconstrictor mechanisms stimulation
- Extravasplanchnic vascular bed vasoconstriction

SNS and RAAS Stimulation

- Juxtaglomerular cells
- Renin
- Angiotensinogen
- Angiotensin I
- Angiotensin II
- ACE
- Aldosterone
- ADH release

Cardiac Dysfunction

- Impaired myocardial activity at rest and with exercise in cirrhosis
- Correlative with degree; reverses with transplant
- Three defined mechanisms
 - Neurohormonal hyperactivity
 - Myocardial growth; fibrosis w/ disturbed diastole
 - Diminished myocardial β adrenergic receptor signal transduction
 - Ventricular function inhibition by circulating cytokines (i.e., TNF-α) and nitric oxide (NO)
Cytokines and Vasoactive Mediators

- Agents studies in HRS include NO, TNF-α, endothelin, endotoxin, glucagon, and intrarenal vasodilating prostaglandins
- Endothelial NO synthase activity upregulated
 - Sheer stress in splanchnic and systemic circulation
 - Endotoxin mediation
- Acute NO inhibition shown to decrease plasma renin activity and prostaglandin E2 excretion

Renal Compensation

- Renal vasoconstriction normally counterbalanced by mediators
 - Prostaglandins
 - Kallikreins, bradykinin
Hemodynamics in Cirrhosis

<table>
<thead>
<tr>
<th></th>
<th>Compensated Cirrhosis</th>
<th>Cirrhosis With Ascites</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splanchic vasoconstriction</td>
<td>Normal</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Circulating volume</td>
<td>Normal</td>
<td>-</td>
<td>---</td>
</tr>
<tr>
<td>Renin, aldosterone, vasopressin</td>
<td>Normal</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Plasma volume</td>
<td>+</td>
<td>++</td>
<td>+++++</td>
</tr>
<tr>
<td>Renal vasoconstriction</td>
<td>Normal/+</td>
<td>Normal/+</td>
<td>++++</td>
</tr>
</tbody>
</table>

HRS: hepatorenal syndrome; +, mild increase; ++, moderate increase; ++++, severe increase; +++++, very severe increase; --, mild decrease; ---, moderate decrease; ---, severe decrease

Categorization

International Ascites Club – 1996

<table>
<thead>
<tr>
<th>HRS Type 1</th>
<th>Serum creatinine: Double to > 2.5 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum creatinine: Less than 2.5 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Creatinine clearance: > 50% of predicted normal</td>
<td></td>
</tr>
<tr>
<td>Concomitant cardiac dysfunction may play role in progression</td>
<td></td>
</tr>
</tbody>
</table>

Gastroenterology 2002;122:1658-76.
Gut 2007 Sep;56(9):1310-8.

Diagnosis

International Ascites Club – 2007

- Presence of cirrhosis or ascites
- Serum creatinine > 1.5 mg/dL
- No improvement in serum creatinine after
 - 48 hours of diuretic withdrawal
 - Volume expansion with albumin (1 g/kg/day)
- Absence of shock
- No current or recent nephrotoxic drug treatment
- Absence of parenchymal kidney disease

Gut 2007 Sep;56(9):1310-8.
Diagnosis – Evolution
International Ascites Club – 2007

Four major changes
- Creatinine clearance no longer incorporated
- Ongoing bacterial infection does not exclude diagnosis
- Albumin is preferred to saline for plasma volume expansion
- Nonessential minor diagnostic criteria including low sodium levels have been omitted

Mortality – “Grim Prognosis”

- Type 1 HRS
 - 80% mortality at two weeks; 10% at three months
- Type 2 HRS
 - Median survival of six months
- Model of end-stage liver disease (MELD) score
 - Independent predictor of mortality in type 2 HRS
 - Score ≥ 20: one month survival; score < 20: eight months
 - Not predictive in type 1 HRS
- Survival much worse when compared to cirrhosis with other forms of acute kidney injury

MELD Score

- Mortality predictor in liver disease
- Three factors comprise MELD score
 - International normalized ratio
 - Serum creatinine
 - Total bilirubin

<table>
<thead>
<tr>
<th>MELD</th>
<th>≤9</th>
<th>10-19</th>
<th>20-29</th>
<th>30-39</th>
<th>≥40</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Month Mortality</td>
<td>4%</td>
<td>27%</td>
<td>76%</td>
<td>83%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Hepatology 2001;33(2):454-70
Hepatology 1996 Jan;23(1):164-76
Hepatology 2005 Jun;41(6):1282-8
Characterization Take Home Points

<table>
<thead>
<tr>
<th>Course</th>
<th>Precipitating Event</th>
<th>Diuretic-Resistant Ascites History</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 HRS</td>
<td>Precipitous doubling of serum creatinine in < 2 weeks</td>
<td>Present in > 50% of cases</td>
<td>May or may not be present</td>
</tr>
<tr>
<td>Type 2 HRS</td>
<td>Gradually progressive</td>
<td>Absent</td>
<td>Always present</td>
</tr>
</tbody>
</table>

Precipitating Factors

- Detectable in 70 to 100% of type 1 HRS cases
 - More than one event can occur in a single patient
- Bacterial infection
- Large-volume paracentesis without albumin infusion
- Gastrointestinal bleeding
- Acute alcoholic hepatitis
Predictive Factors

- Factors surrounding severe hemodynamic derangements and neurohormonal activation
 - Dilutional hyponatremia, low urinary sodium, reduced plasma osmolality, and low arterial BP
- One study showed three independent predictors via multivariate analysis
 - Hyponatremia, high plasma renin activity, absence of hepatomegaly

Preventative Measures

- Three studied mechanisms
 - Prophylactic antibiotic therapy for those at high SBP risk
 - Pentoxifylline (PTX) administration
 - Albumin use post-large-volume paracentesis
- Avoiding non-steroidal anti-inflammatory agents, aminoglycoside antibiotics, and diuretic overuse

SBP Prophylactic Antibiotics

- Daily norfloxacin shown to reduce one-year probability of developing SBP from 61% to 7%
- One-year probability of HRS: 41% to 28% ($p = 0.02$)
- Beneficial effect believed to be bacterial translocation prevention, proinflammatory cytokine prevention, and improved circulatory function
Pentoxifylline Administration

- TNF-α synthesis inhibitor
- 101 severe alcoholic hepatitis patients
- Four week comparison of PTX 400 milligrams orally three times daily versus placebo
- Short-term survival: 24.5%, PTX; 46.1%, placebo
- HRS cause of death: 50%, PTX; 91.7%, placebo
- Age, creatinine level at randomization, and PTX associated with survival

Volume Expansion – Albumin

- 289 patients randomized to treatment by total paracentesis plus albumin, dextran 70, or polygeline
- Monitored for postparacentesis circulatory dysfunction on sixth day after performed
 - Dextran 70: 34.4%, \(p = 0.018 \); polygeline: 37.8%, \(p = 0.004 \); albumin: 18.5%
- Albumin is preferred plasma expander

Volume Expansion - Albumin

<table>
<thead>
<tr>
<th>Patient's Category</th>
<th>Albumin</th>
<th>Dextran 70 or Polygeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4.4 Liters</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>5-9.1 Liters</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>>9.1 Liters</td>
<td>>20</td>
<td>>20</td>
</tr>
</tbody>
</table>

* \(p < 0.05 \); ** \(p < 0.02 \)
HRS Treatment Goals

- Improve circulating volume status
- Vasoconstrictor use to target splanchnic vasculature
- Decrease portal hypertension
- Bridge patient to liver transplant
- Four therapeutic options
 - Pharmacologic, transjugular intrahepatic portosystemic shunt (TIPS), renal replacement therapy (RRT), and liver transplantation

Albumin – Treatment

- Plasma volume expansion
 - May aid in increasing effective circulating volume
 - Should definitively be used after large-volume paracentesis (8 g/L of ascitic fluid removed)
- Dose without paracentesis: 1 g/kg per day
- Frequently combined with other therapies
- Debate between use of albumin versus crystalloid
- Few trials that compare albumin use to controls

Terlipressin

![Terlipressin](image1)

![Vasopressin](image2)
Terlipressin in HRS

- V1 vasopressin agonist
- Promotes increased circulating plasma volume
- Proposed selective vasoconstriction activity on splanchnic vasculature
- Theoretical suppression of endogenous vasoactive systems to improve renal perfusion

Terlipressin – Adverse Events

- Myocardial ischemia
- Arrhythmias
- Hypertension
- Intestinal ischemia
- Dyspnea
- Necrosis at injection site

Terlipressin + Albumin vs. Albumin

- 46 patients enrolled, treated for 15 days
 - Terlipressin 1-2 mg IV q4h
 - Albumin 1 g/kg followed by 20-40 g/day
- Outcomes
 - Improvement in renal function
 - Three-month survival
Terlipressin + Albumin vs. Albumin

<table>
<thead>
<tr>
<th></th>
<th>Terlipressin + Albumin</th>
<th>Albumin</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved Renal Function</td>
<td>10/23 (43.5%)</td>
<td>2/23 (8.7%)</td>
<td>0.017</td>
</tr>
<tr>
<td>Survival</td>
<td>27%</td>
<td>19%</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Adverse events included:
- Myocardial ischemia
- Intestinal ischemia
- Arterial hypertension

Gastroenterology 2008;134:1352-9.

Terlipressin + Albumin vs. Albumin

![Graph showing probability of response over time]

Gastroenterology 2008;134:1352-9.

Terlipressin vs. Norepinephrine

- No significant differences between treatment groups
- NE group follow-up much shorter
- Very small study groups

<table>
<thead>
<tr>
<th></th>
<th>Terlipressin</th>
<th>Norepinephrine</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response</td>
<td>10/12 (83%)</td>
<td>7/10 (70%)</td>
<td>ns</td>
</tr>
<tr>
<td>Therapy Duration*</td>
<td>6</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>HRS Recurrence</td>
<td>6/10 (60%)</td>
<td>2/7 (29%)</td>
<td>ns</td>
</tr>
<tr>
<td>Follow-up*</td>
<td>39 ± 9</td>
<td>19 ± 7</td>
<td>ns</td>
</tr>
</tbody>
</table>

* - Represented duration by days on therapy

Midodrine + Octreotide

- **Midodrine**
 - α-adrenergic agonist
 - Dose: 7.5-15 milligrams every eight hours
- **Octreotide**
 - Nonspecific vasodilatory inhibition, glucagon inhibition
 - Dose: 100 mcg subcutaneous every eight hours
- **Goal**: increase MAP and improve renal perfusion

Midodrine + Octreotide

- Combination versus placebo in type 1 HRS
- Retrospective, single-center study
- 81 patients identified
 - 60 in midodrine/octreotide group
 - 21 in placebo group

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Placebo</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction of SCr</td>
<td>24/60 (40%)</td>
<td>2/21 (10%)</td>
</tr>
<tr>
<td>30-Day Mortality</td>
<td>26/60 (43%)</td>
<td>15/21 (71%)</td>
</tr>
</tbody>
</table>

TIPS

- Shunt insertion between hepatic and portal vein systems
- Alleviates portal hypertension
- Improvement in neurohormonal factors, hemodynamics, and renal function
- Study in 31 type 1 and 2 HRS patients showed three, six, 12-, and 18-month survival post-TIPS at 81%, 71%, 48%, and 35% respectively
- Ten week survival of type 1 HRS improved to 53%

Combination Therapy

- Midodrine, octreotide, albumin, and TIPS in type 1 HRS
 - Fourteen patients enrolled for pharmacologic therapy
 - Five received TIPS insertion
- All five TIPS patients were alive six to 30 months after placement (only one required transplant)
- Patients not eligible for TIPS either required liver transplant or died (two weeks-27 month survival)

References:
[Hepatology 2004;40:55-64.]

Renal Replacement Therapy

- Provides supportive therapy for patients with HRS who are waiting for transplant
- May help treat complications
 - Volume overload, metabolic acidosis, electrolyte abnormalities and uremia
- May improve short-term survival
- No evidence for long-term mortality
- Optimal RRT modality unclear

References:
RRT – Challenges in HRS

- Hemodynamic instability
- Coagulopathy in liver disease
- Encephalopathic patients
- No evidence for optimal modality and timing
- Justifiable in patients who are not transplant candidates?

Liver Transplantation

- Only definitive cure for HRS
- Barriers
 - Short survival expectancy
 - Long wait times for organs
 - Model for End-Stage Liver Disease (MELD) scores may be limiting
 - May require simultaneous kidney transplantation

Liver Transplantation

- Predictors of renal recovery
 - Younger age of recipient
 - Nonalcoholic liver disease
 - Low bilirubin at seven days post-transplant
 - Younger donor age
 - Terlipressin plus albumin use prior to transplant associated with improved survival
Ongoing Research

- REVERSE Trial – terlipressin in type 1 HRS
- Safety and pharmacokinetics of ifetroban
- Role of angiogenic factors
- LJPC-501: new investigative vasoconstrictor

Conclusions

- HRS is a complication of cirrhosis that is marked by acute kidney injury
- Transplantation is the only definitive cure for HRS
- Little evidence to direct bridging therapy for liver transplantation
- Ongoing research may provide new therapeutic targets and strategies for HRS management

Cirrhosis and Hepatorenal Syndrome

Chris Droego, Pharm.D.
Clinical Pharmacy Specialist, Critical Care
UC Health – The University of Cincinnati Medical Center
Potential complications from portal hypertension include...
1) Ascites
2) Hepatorenal syndrome
3) Esophageal varices
4) Hepatopulmonary syndrome
5) All of the above

The following was a change in diagnostic criteria for HRS by the International Ascites Club in 2007:
1) The diagnostic creatinine clearance threshold was lowered to 50 mL/min
2) Albumin is preferred to saline for plasma volume expansion
3) Ongoing bacterial infections exclude diagnosis
4) Hyponatremia is a positive diagnostic for both types 1 and 2 HRS

The following preventative mechanisms have been associated with positive outcomes in HRS:
1) Albumin and dextran 70 infusions post large-volume paracentesis
2) TNF-α synthesis inhibition
3) Third generation cephalosporins as agents of choice in SBP prophylaxis
4) Early transjugular intrahepatic portosystemic shunt insertion
Review Question #4

<table>
<thead>
<tr>
<th>HRS treatment goals include...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Selective vasoconstrictor use to target splanchnic vasculature</td>
</tr>
<tr>
<td>2) Reduction in hepatic venous portal gradient</td>
</tr>
<tr>
<td>3) Incorporate necessary therapeutic options to bridge to liver transplantation</td>
</tr>
<tr>
<td>4) Improve circulating volume status</td>
</tr>
<tr>
<td>5) All of the above</td>
</tr>
</tbody>
</table>

Review Question #5

<table>
<thead>
<tr>
<th>The following is true regarding therapeutic alternatives for HRS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Nonalcoholic liver disease is associated with a higher likelihood of renal recovery post-liver transplantation</td>
</tr>
<tr>
<td>2) CRRT is the preferred RRT modality</td>
</tr>
<tr>
<td>3) Large, prospective studies have shown the octreotide and midodrine combination to improve mortality</td>
</tr>
<tr>
<td>4) Terlipressin plus albumin has superior mortality outcomes compared to albumin alone</td>
</tr>
</tbody>
</table>