Diabetic Ketoacidosis
and
Hyperosmolar Hyperglycemic State

Robert S. Busch, M.D., FACE
Attending Physician
The Endocrine Group

Figure 1. The “Ominous Octet” of Defects in Diabetes

8 Defects
1: Beta Cell
2: Alpha Cell
3: Brain
4: Kidney
5: Muscle
6: Adipocyte
7: Liver
8: GI Tract
Diabetes Complications

- **Acute**
 - Hypoglycemia
 - DKA/HHS

- **Chronic**
 - Microvascular
 - Macrovascular
 - Neurologic

Diabetic Ketoacidosis

- An acute, life threatening metabolic acidosis complicating type 1 and some cases of type 2 DM (usually with intercurrent illness: infection or surgery)

- Usually coupled with an increase in glucagon concentration with two metabolic consequences:
 - 1) Maximal gluconeogenesis with impaired peripheral utilization of glucose
 - 2) Activation of the ketogenic process and development of metabolic acidosis
DKA Biochemistry

Fed State
- Increased Insulin
- Decreased Glucagon
Results in liver converting FFAs to TGs and stored as fat, inhibition of gluconeogenesis and storage of glycogen

Fasting State
- Decreased Insulin
- Increased Glucagon
Results in breakdown of FFAs to ketones

Insulin and Glucagon Regulate Normal Glucose Homeostasis

Glucose output
- Glucagon (alpha cell)
- Insulin (beta cell)

Blood glucose
- Liver
- Muscle

Blood glucose

Insulin and Glucagon Regulate Normal Glucose Homeostasis

Pancreas

Glucose output

Glucose uptake

Liver

Muscle

Adipose tissue

Fasting state

Glucagon (alpha cell)

Insulin (beta cell)

Ketogenesis

- **KETOGENESIS** occurs as a result of high glucagon/insulin ratio:
 - 1) increased liberation of free fatty acids due to the loss of the inhibitory action of insulin on the hormone sensitive lipase.
 - 2) activation of the transport system (or reestrafication to VLDL will occur and nothing will happen)

- this results in high levels of acetone, acetoacetate and β-hydroxybutyrate

[Diagram showing the metabolic pathways of ketogenesis]

The initial step in diagnostic approach is testing urine for glucose and ketones.

Diagnostic criteria for DKA:
- hyperglycemia (>250 mg/dl)
- ketosis (ketonemia and ketonuria)
- acidosis (pH<7.3, HCO₃<15mEq/L)

Supporting features are volume depletion and Kussmaul’s breathing.

Case Presentation

- 21 yo ACP student
- Presents with complaints of N/V x 2 days
- ROS: dry mouth, nocturia
- Physical Examination:
 - Vitals: BP 90/60; Pulse 110 (140 standing); RR 16; Temp 101°
 - Abdomen: Tender LE: No edema
- Labs: 13.5
 - L shift 22>455
 - 46
Case Presentation

- 21 yo ACP student
- Presents with complaints of N/V x 2 days
- ROS: dry mouth, nocturia
- Physical Examination:
 - Vitals: BP 90/60; Pulse 110 (140 standing); RR 16; Temp 101°
 - Abdomen: Tender LE: No edema
- Labs: 13.5
 - L shift 22 > 455
 - 46

Case Presentation

- Profile

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>92</td>
<td>41</td>
</tr>
<tr>
<td>5.8</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>512</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Anion Gap
 - Na – (Cl and CO2)
 - Normal: 8-10
 - This Patient:

- Causes of an Anion Gap metabolic acidosis
 - MUDPILES
Case Presentation

- Profile
 - 132 | 92 | 41
 - 5.8 | 8 | 1.5 | 512

- Anion Gap
 - Na – (Cl and CO2)
 - Normal: 8-10
 - This Patient: 132 - (92 + 8) = 32

- Causes of an Anion Gap metabolic acidosis
 - MUDPILES
Anion Gap Metabolic Acidosis

- Methanol
- Uremia
- DKA
- Paraldehyde
- Ischemia/Infection
- Lactic Acidosis
- Ethylene Glycol
- Salicylates

Case Presentation

- Kussmaul breathing with fruity odor
- Signs of dehydration (↑ HR, postural BP, tenting of skin, sunken eye balls)
Case Presentation

- **Osmolality**
 \[\text{osmolality} = 2[\text{Na}] + \frac{\text{Glu}}{18} + \frac{\text{BUN}}{2.8} \]
 This patient: 2(132) + 512/18 + 41/2.8 = 307

- **Urine analysis**
 pH 4.3; 4+ glucose; 2+ ketones; no WBCs; no bacteria

- **Arterial Blood Gas**
 pH 7.12; pCO2 20; pO2 100; HCO3 8
Case Presentation

- **Osmolality**

 \[
 \text{osmolality} = 2[\text{Na}] + \frac{\text{Glu}}{18} + \frac{\text{BUN}}{2.8}
 \]

 This patient: \(2(132) + \frac{512}{18} + \frac{41}{2.8} = 307\)

- **Urine analysis**

 pH 4.3; 4+ glucose; 2+ ketones; no WBCs; no bacteria

- **Arterial Blood Gas**

 pH 7.12; pCO2 20; pO2 100; HCO3 8

<table>
<thead>
<tr>
<th>Clinical Signs and Symptoms</th>
<th>Laboratory Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>Hyperglycemia</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>(usually 350–700 mg/dL)</td>
</tr>
<tr>
<td>Abnormal skin turgor</td>
<td>Bun, Cr increased*</td>
</tr>
<tr>
<td>Dry mucous membranes</td>
<td>Hyperosmolar</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Hypokalemia†</td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td>Hypophosphatemia</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>Anion gap acidosis</td>
</tr>
<tr>
<td>Ileus</td>
<td>Low bicarbonate</td>
</tr>
<tr>
<td>Kussmaul respiration</td>
<td>(<15 meq/l)</td>
</tr>
<tr>
<td>Ketotic (fruity) breath</td>
<td>Serum and urine ketones</td>
</tr>
<tr>
<td>Altered mental status</td>
<td>Arterial pH <7.3</td>
</tr>
<tr>
<td>Somnolence to coma (coma unusual)</td>
<td>Leukocytosis</td>
</tr>
</tbody>
</table>

*Creatinine increased secondary to dehydration and because of interference by ketones with standard creatinine assay.
†Serum levels may initially be high or normal in setting of acidosis; however, total K+ deficit is usually profound.

Etiology of DKA / HHS

- Omission of insulin
- Insulin under-dose during sick days
- Newly diagnosed type 1 diabetes
- Infection
- MI
- Pancreatitis
Treatment of DKA / HHS

- Fluid Consideration
 - NS
 - D5 1/2NS
- Insulin Therapy
 - Insulin Drip
- Potassium
 - Minibags
- Phosphate
 - As potassium salt
- Bicarbonate (consideration for pH<7.0)
- Identify and treat underlying cause of event

Table 2—Typical total body deficits of water and electrolytes in DKA and HHS

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total water (l)</td>
<td>100</td>
<td>100–200</td>
</tr>
<tr>
<td>Water (ml/kg)†</td>
<td>7–10</td>
<td>5–13</td>
</tr>
<tr>
<td>Na⁺ (mEq/kg)</td>
<td>3–5</td>
<td>5–15</td>
</tr>
<tr>
<td>Cl⁻ (mEq/kg)</td>
<td>3–5</td>
<td>4–6</td>
</tr>
<tr>
<td>K⁺ (mEq/kg)</td>
<td>5–7</td>
<td>3–7</td>
</tr>
<tr>
<td>PO₄ (mmol/kg)</td>
<td>1–2</td>
<td>1–2</td>
</tr>
<tr>
<td>Mg²⁺ (mEq/kg)</td>
<td>1–2</td>
<td>1–2</td>
</tr>
<tr>
<td>Ca²⁺ (mEq/kg)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data are from Ennis et al. (15) and Kreisberg (8);† Per kilogram of body weight.
Treatment of DKA / HHS

- Fluid Consideration
 - NS
 - D5 1/2NS
- Insulin Therapy
 - Insulin Drip
- Potassium
 - Minibags
- Phosphate
 - As potassium salt
- Bicarbonate (consideration for pH<7.0)
- Identify and treat underlying cause of event

Correction of dehydration, hyperglycemia, and electrolyte imbalances

- **IVF:** the usual fluid deficit is 5-7L
 - on arrival the patient is given 1-2L of isotonic saline or ringer’s lactate followed by infusion rates dependent on fluid status and urine output.
 - when glucose reaches 250mg/dl add 5% glucose solution (hypoglycemia, cerebral Edema)
- **Insulin:** is a prerequisite for recovery
 - initial IV bolus (or IM) of 0.1 unit/kg followed by infusion of 0.1-0.2 units/kg /hour till ketosis is reversed; goal of glucose decrease of 100 mg/dL per hour
Potassium: replacement is always necessary
- if value on arrival is high: delay replacement
- if values are low: give K early
- if values are very low (K > 3.3): hold insulin for 60-90 min. until 40-50 mEq of K are given

Bicarbonate: consider need
- indicated in severe acidosis (pH<7.0) or with hypotension (that can be caused by acidosis alone)
- stop the infusion at pH 7.2 to avoid alkalosis upon reversal of ketosis
ALL patients should be followed with a flow sheet outlining amounts and timing of insulin and fluids together with record of vital signs, urine volume, and blood chemistries. Without such a record therapy tends to be chaotic.

Each patient should receive intensive detailed instructions about how to avoid future episodes of this potentially disastrous complication of diabetes.

SUGGESTED DIABETES FLOW SHEET

<table>
<thead>
<tr>
<th>Date</th>
<th>Hour</th>
<th>B/P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Temperature**
- **Pulse**
- **Respiration (R)**
- **Blood Pressure**
- **Serum Glucose (mg/dL)**
- **Serum Ketones**
- **Urinalysis**

ELECTROLYTES

- **Sodium (Na+)**
- **Potassium (K+)**
- **Chloride (Cl-)**
- **Calcium (Ca++)**
- **Magnesium (Mg++)**

- **Effective Osmolality**
- **Glucose (mg/dL)**

PIMC

- **Hgb**
- **Hct**
- **WBC**
- **Platelet**
- **Albumin**

INSULIN

- **Units Per Hour**

FLUIDS

- **Intake**
- **Output**

METABOLITES

- **Na+**
- **K+**
- **Cl-**
- **Ca++**
- **Mg++**
- **Osmolality**
- **Other**

<table>
<thead>
<tr>
<th>A.B.O.</th>
<th>pH</th>
<th>1.25H</th>
<th>0.67H</th>
<th>0.43H</th>
<th>0.21H</th>
<th>0.11H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALL patients should be followed with a flow sheet outlining amounts and timing of insulin and fluids together with record of vital signs, urine volume, and blood chemistries. Without such a record therapy tends to be chaotic.

Each patient should receive intensive detailed instructions about how to avoid future episodes of this potentially disastrous complication of diabetes.

Sick Day Rules (Prevent DKA/HHS)

- DO NOT STOP INSULIN!
- Keep usual basal insulin
- Cover with quick-acting insulin
- Frequent finger stick monitoring (q 1-2 hrs)
- Check urine ketones
- Use sport drinks to maintain hydration
- Supplement calories to support insulin coverage (glucose affected prior to ketones)
- If vomit, go to ER
Pitfalls of DKA Management

- Not giving enough fluid (continued dehydration)
- Delay in initiating insulin drip (hyperglycemia)
- Failure to adequately keep up with K+ (hypokalemia and potential arrhythmias)
- Too fast a rate of glucose decrease (cerebral edema)
- Failure to include glucose in IV fluids when blood sugar falls below 250 mg/dL (hypoglycemia)
- Early DC of insulin drip (hyperglycemia, ketonemia; wait until urine ketones clear and anion gap is closed)

You’re fired!
Your Turn - You manage the patient!

12/28/06: Admission to St. Peter's Hospital

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>pH 7.03</td>
</tr>
<tr>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>

Anion Gap = ?

Your Turn - You manage the patient!

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>pH 7.03</td>
</tr>
<tr>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>47.4</td>
</tr>
<tr>
<td>Time</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>1200</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6 2.5 950</td>
</tr>
<tr>
<td>1400</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>4 2.5 884</td>
</tr>
<tr>
<td>1900</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>14 1.7 250</td>
</tr>
</tbody>
</table>

Your Turn - You manage the patient!
Questions