Benzodiazepine-Induced Delirium
and Proton Pump Inhibitor Induced
Acute Renal Failure

BENZODIAZEPINE
(BZD) – INDUCED
DELIRIUM

Objectives

• Pharmacists
 o Describe the mechanism, presentation and management of benzodiazepine-induced delirium and proton pump inhibitor-induced acute renal failure
 o Recommend treatment plans for benzodiazepine-induced delirium and proton pump inhibitor-induced acute renal failure using case reports and series

• Pharmacy Technicians
 o Recognize the signs and symptoms of benzodiazepine-induced delirium and proton pump inhibitor-induced acute renal failure
 o List the treatment options for benzodiazepine-induced delirium and proton pump inhibitor-induced acute renal failure
Epidemiology of Delirium

- 14 – 24% of patients at hospital admission
- Up to 56% of hospitalized patients
- 32 – 67% undiagnosed cases
- 10 – 75% increased morbidity and mortality
- Most cases are multifactorial with polypharmacy
- 12 – 39% medication induced delirium
- Incidence of benzodiazepine induced delirium is unknown

Benzodiazepine Class Overview

- Indications: anxiolytic, sedative, anticonvulsant, alcohol withdrawal, muscle relaxant
- Mechanism of action: binds to post-synaptic gamma-aminobutyric acid (GABA) receptor in CNS
- Contraindications: hypersensitivity drug or any component, acute narrow angle glaucoma, sleep apnea, severe respiratory insufficiency
- Warnings: anterograde amnesia, CNS depression, paradoxical reaction (hyperactive), hepatic impairment, CNS depression, withdrawal
- Monitoring: respiratory/CNS status, blood pressure, heart rate

Overview of Common Benzodiazepines

<table>
<thead>
<tr>
<th></th>
<th>Dosing range (mg)</th>
<th>Peak plasma level (hr)</th>
<th>Metab/Elim</th>
<th>Elimination t ½ (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorazepam</td>
<td>0.5 – 8 (IV)</td>
<td>2 - 4</td>
<td>urine, feces/ hepatic</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Temazepam</td>
<td>15 - 60</td>
<td>0.5 - 3</td>
<td>urine 80-90%/ hepatic</td>
<td>8 – 22</td>
</tr>
<tr>
<td>Triazolam</td>
<td>0.125 – 0.5</td>
<td>0.5 – 2</td>
<td>urine/ extensively hepatic</td>
<td>2</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>0.25 - 4</td>
<td>1 – 2</td>
<td>urine/hepatic</td>
<td>6.3 to 26.9</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0.25 – 20 (IV)</td>
<td>0.5 – 1</td>
<td>urine, feces/ hepatic</td>
<td>1.8 - 6</td>
</tr>
<tr>
<td>Long acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clonazepam</td>
<td>0.25 - 20</td>
<td>1 - 4</td>
<td>urine/ extensively hepatic</td>
<td>18 - 50</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2 – 20 (IV)</td>
<td>1 – 2</td>
<td>Hepatic/renal as metabolites</td>
<td>20 - 100</td>
</tr>
</tbody>
</table>
DSM IV Definition: Substance-Induced Delirium

Criterion

- Disturbance of consciousness
- Change in cognition or perceptual disturbance
- Develops over a short period of time (hours to days) and fluctuates during the course of a day
- Evidence from history, physical exam, or lab findings that disturbance is caused by either (1) or (2):
 1. Symptoms in criteria A and B developed during substance intoxication
 2. Medication use is etiologically related to the disturbance

Presentation of Signs and Symptoms

Inability to focus, sustain, or shift attention	Misinterpretation
Memory impairment	Illusions
Disorientation	Hallucinations
Speech or language disturbance	Agitation
Sleep-wake cycle disturbance	Emotional disturbance (hypo/hyperactive)
Increased psychomotor activity	Rapid and unpredictable shifts in emotional states
Impaired judgment	

Drug Induced Delirium

Anticholinergics (benztropine, atropine, scopalamine)	Antipsychotics (clozapine, haloperidol, olanzapine)
Anesthetics	Corticosteroid
Anticonvulsants (phenytoin, valproic acid, carbamazepine, levetiracetam)	Digoxin
Antidepressants (tricyclic antidepressants, lithium, bupropion)	H₂ receptor antagonists (cimetidine, ranitidine, famotidine)
Antiarrhythmics (amiodarone, lidocaine, quinidine)	Muscle relaxant (baclofen, cyclobenzaprine)
Antihistamines (diphenhydramine)	NSAIDs (diclofenac, ibuprofen, ketoprofen)
Antiparkinson agents (levodopa, bromocriptine, amantadine)	Opioids (fentanyl, meperidine, morphine)
Antispasmodics (oxybutynin)	Sedative Hypnotics (alcohol, barbiturates, BZD)
Neurotransmitters in Delirium

- BZDs cause sedation, drowsiness, memory difficulties and lack of coordination and impaired learning of verbal and visual information
- Anterograde amnesia effects are greater following higher potency and shorter acting benzodiazepines
- Imbalance due to neurotransmitters
- BZD have high affinity to γ-aminobutyric acid in CNS which alter neurotransmitters
- Proposed mechanism of action involves dysfunction of GABA

Etiology of Benzodiazepine-Induced Delirium

- BZDs cause sedation, drowsiness, memory difficulties and lack of coordination and impaired learning of verbal and visual information
- Anterograde amnesia effects are greater following higher potency and shorter acting benzodiazepines
- Imbalance due to neurotransmitters
- BZD have high affinity to γ-aminobutyric acid in CNS which alter neurotransmitters
- Proposed mechanism of action involves dysfunction of GABA

Risk Factors

Patient
- Increased age
- Alcohol use
- Male
- Smoking
- Living alone

Environment
- Hospital admission
- Isolation
- No daylight
- No clock
- No visitors
- Noise
- ICU

More modifiable
- Acute Illness
- Length of stay
- Fever
- Lack of nutrition
- Hypotension
- Metabolic disorder
- Tubes/catheters
- Medications

Less modifiable
- Comorbidities
- Cardiac disease
- Cognitive impairment
- Pulmonary impairment
- Renal dysfunction

Van Rompaey B. Crit Care. 2009; 13:R77
Medication Risk Factors

<table>
<thead>
<tr>
<th>Medication</th>
<th>Transition to delirium only odds ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorazepam</td>
<td>1.2 (1.1–1.4)</td>
<td>0.003</td>
</tr>
<tr>
<td>Midazolam</td>
<td>1.7 (0.9–3.2)</td>
<td>0.09</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>1.8 (0.9–3.2)</td>
<td>0.09</td>
</tr>
<tr>
<td>Morphine</td>
<td>1.1 (0.9–1.3)</td>
<td>0.24</td>
</tr>
<tr>
<td>Propofol</td>
<td>1.4 (0.8–2.3)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Pandharipande P. Anesth 2006; 104: 21-6

Sequelae of Delirium

- Increased mortality
- Increased length of stay
- Development of dementia
- Cognitive impairment
- Decreased functional abilities
- Increased need for chronic care
- Higher health care costs

Girard TD. Crit Care Med. 2010; 38: 1513-20
Treatment Options

- Recognition of offending agent
- Discontinue or reduce dose of possible offending agents
- Antidote if necessary
 - Flumazenil 0.2 mg iv
- Provide supportive care and orientation to environment
- Maintain competency
- Use of haloperidol or atypical antipsychotics if necessary
- Physostigmine 1-4 mg iv

Case Report #1

- CC: 63 y/o male presented to ED with complaint of intense sore throat, hoarseness, and dysphagia.
- PMH: diabetes, remote history of alcohol abuse
- VS: Temp: 38 C, Pulse: 122; BP: 106/68; RR: 22, O2%: 91
- Patient was given lorazepam 2 mg iv push for sedation for a procedure.
- ~ 25 min after administration, patient became abruptly agitated, flailing in bed, and uncooperative
- Vital Signs remained stable except HR: 105 beats/min
- Flumazenil 1 mg ivpush was administered with complete resolution of agitation within 1 min. Patient was cooperative and had no recall of procedure or episode

Case Report #2

- CC: 30 y/o male suffered 2nd and 3rd degree burns over 27% of total body surface area, mostly upper extremities, trunk and face but was not unconscious. Presented moderately anxious and apprehensive
- PMH: good health, history of histrionic personality disorder
- Medication: None
- Patient was admitted and placed on morphine drip. 3 days following admission, complained of increased pain and anxiety, lorazepam 2 mg iv was given, morphine was turned off 20 min later
- He awoke with complaints of pain during dressing change so morphine 5 mg iv was given but drip was still turned off. He did not recognize family, was fully disoriented with psychomotor agitation and unintelligible speech.

Case Report #2: Resolution

- Consciousness increased – able to recognize family and staff 5 hours after lorazepam dose but was still having persecutory delusions
- Patient was restarted on morphine iv drip, level of consciousness continued to improve.
- 7 hours after lorazepam injection, patient was fully awake, oriented, and responsive

Question 1

- Which of the following would be a treatment option for benzodiazepine induced delirium?
 - A. Antidote
 - B. Removal of agent
 - C. Antipsychotics
 - D. Maintain environment
 - E. All of the above

PROTON PUMP INHIBITOR (PPI) - INDUCED ACUTE INTERSTITIAL NEPHRITIS (AIN)
Acute Interstitial Nephritis:

Epidemiology

- 6 - 8% interstitial nephritides cause of acute renal failure cases
- 2 – 3% reported in renal biopsies
- 2/3 of cases are drug induced
- Other causes infectious (viral or bacterial)

Proton Pump Inhibitor Overview

- Indications: erosive esophagitis, gastroesophageal reflux disease, hypersecretory disorder, gastric ulcers, helicobacter pylori eradication
- Mechanism of action: suppression of gastric acid secretion by inhibiting H⁺/K⁺-ATPase in gastric parietal cell
- Contraindications: hypersensitivity to drug or any component
- Warnings: atrophic gastritis, carcinoma, fractures, gastrointestinal infections, severe hepatic impairment

<table>
<thead>
<tr>
<th>Proton Pump Inhibitor Overview</th>
<th>Dosage (mg/day)</th>
<th>T ½ life (hr)</th>
<th>Metabolism by CYP450 enzymes in the liver</th>
<th>Excretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lansoprazole</td>
<td>15 – 30</td>
<td>1.5</td>
<td>75% = 80%</td>
<td>14 – 25% renal inactive metabolites, ≤1% parent drug in urine 67% bile</td>
</tr>
<tr>
<td>Pantoprazole</td>
<td>40</td>
<td>1</td>
<td>CYP2C19 > CYP2A6</td>
<td>71 – 82% renal inactive metabolites, no active drug in urine 18 – 20% fecal</td>
</tr>
<tr>
<td>Rabeprazole</td>
<td>20</td>
<td>1 - 2</td>
<td>CYP2C19 > CYP2A6</td>
<td>90% renal inactive metabolites, no active drug in urine 10% fecal</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>20-40</td>
<td>0.5 - 1</td>
<td>CYP2C19 > CYP2A6</td>
<td>77% renal inactive metabolites, "minimal" parent drug in urine 19% bile</td>
</tr>
<tr>
<td>Esomeprazole</td>
<td>20-40</td>
<td>1 – 1.5</td>
<td>CYP2C19 > CYP2A6</td>
<td>80% renal inactive metabolites, ≤1% parent drug in urine</td>
</tr>
</tbody>
</table>
Etiology: Acute Interstitial Nephritis

- Immune mediated tubulointerstitial injury
- Inflammation and edema of renal interstitium
- Infiltration of inflammatory cells within renal interstitium with edema sparing glomeruli and blood vessels
- Fibrotic lesions may be diffuse and patchy beginning in renal cortex
- Infiltrate composed of mononuclear cells and lymphocytes and eosinophils (may be absent)

Presentation of Signs and Symptoms

- Weakness
- Malaise
- Anorexia
- Fatigue
- Fever
- Rash
- Arthralgia
- Presents 7 days up to 9 months
 - Average 9.9 weeks after starting PPI
 - Rechallenge symptoms within days of exposure

Diagnosis

<table>
<thead>
<tr>
<th>Urinalysis</th>
<th>Pyuria, hematuria, proteinuria, eosinophilia, urine sediment, WBC, WBC cast, RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histopathology</td>
<td>Interstitial cellular infiltrate with or without tubulitis</td>
</tr>
<tr>
<td>Renal biopsy(Gold standard)</td>
<td>Eosinophilic cellular infiltrate</td>
</tr>
<tr>
<td>Lab findings</td>
<td>Elevation in creatinine or blood urea nitrogen occurs rapidly</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Fever, rash, eosinophilia, oliguria, arthralgia</td>
</tr>
</tbody>
</table>

Brewster UC. Clinical Nephrology, 2007 68(2):65-72
Overview of PPI-Induced AIN

- Idiosyncratic reaction
- Etiology remains unknown – most likely hypersensitivity immune reaction to drug or its metabolites
- Hypothesis: metabolites act as haptens (mimic renal antigens), planted antigens, circulating immune complexes

Drug-Induced Interstitial Nephritis

<table>
<thead>
<tr>
<th>Class of medications</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td>Cephalosporins, ciprofloxacin, ethambutol, isoniazid, macrolides, penicillins, rifampin, sulfonamides, tetracycline, vancomycin</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Furosemide, hydrochlorothiazide, triamterene</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Acyclovir, allopurinol, amiodipine, azathioprine, cephotaxim, carbamazepine, clofibrate, cocaine, creatine, diltiazem, famotidine, indinavir, mesalazine, phenytoin, prazosin, propylthiouracil, quinine, ranitidine</td>
</tr>
<tr>
<td>Other medications</td>
<td></td>
</tr>
</tbody>
</table>

Management

- Withdrawal of offending agent
- Corticosteroid
 - Prednisone 1 mg/kg for 1 – 2 months with rapid taper
- If no improvement consider
 - Dialysis
 - Mycophenalate mofetil

Brewster VC. Clinical Nephrology. 2007 68 (4):40-52
Sierra F. Alimentary pharmaol ther 2007. 26, 545 - 53
Case Report: PPI-Induced AIN

- CC: 36 yr old female admitted with 5 week history of nausea, vomiting and 7 kg weight loss, denied rash, arthralgia or fever but had chills
- PMH: cholecystectomy, hysterectomy, and arthroscopic knee surgery 8 wk before admission. Took omeprazole 20 mg daily for last 3 months for heartburn. Also took aspirin and APAP for migraines once a month. Last dose for migraine was a month ago and last dose for heartburn was 2 weeks prior to admission.
- Allergies: NKDA
- PE: afebrile, BP – 100/70 mmHg, rest of exam was unremarkable

Labs:
- Creatinine: 5.9 mg/dL
- Urinalysis: trace hematuria, proteinuria (660 mg/dL), pyuria, no RBC, cellular casts, or eosinophilia
- WBC, eosinophil, and platelet counts were WNL
- IV fluids administered but serum creatinine increased up to 7.68 mg/dL. Renal ultrasound showed bilateral renal enlargement with no evidence of obstruction
- A week later serum creatinine rose to 10.5 mg/dL so a renal biopsy was performed to reveal extensive interstitial infiltration of lymphocytes, plasma cells, eosinophils.
- Diagnosis of AIN due to omeprazole
- Prednisone 1 mg/kg was initiated
- Serum creatinine decreased to 8.92 mg/dL after 4 days and then returned to 1.26 mg/dL after 4 weeks

Case report (cont’d)

Labs:
- Creatinine: 5.9 mg/dL
- Urinalysis: trace hematuria, proteinuria (660 mg/dL), pyuria, no RBC, cellular casts, or eosinophilia
- WBC, eosinophil, and platelet counts were WNL
- IV fluids administered but serum creatinine increased up to 7.68 mg/dL. Renal ultrasound showed bilateral renal enlargement with no evidence of obstruction
- A week later serum creatinine rose to 10.5 mg/dL so a renal biopsy was performed to reveal extensive interstitial infiltration of lymphocytes, plasma cells, eosinophils.
- Diagnosis of AIN due to omeprazole
- Prednisone 1 mg/kg was initiated
- Serum creatinine decreased to 8.92 mg/dL after 4 days and then returned to 1.26 mg/dL after 4 weeks

PPI induced AIN : Case Series

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Age</th>
<th>Baseline Cr (mg/dL)</th>
<th>Max Cr (mg/dL)</th>
<th>Tx at time of dx/duration</th>
<th>Tx after dx</th>
<th>F/U Cr/months post presentation</th>
<th>F/U eGFR (mL/min/1.73 m²)</th>
<th>Clinical Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79</td>
<td>1.44</td>
<td>3.4</td>
<td>Omeprazole (3 wk)</td>
<td></td>
<td>2.04/12 months</td>
<td>34</td>
<td>Prolonged course of prednisone and azathioprine</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>1.02</td>
<td>3.06</td>
<td>Omeprazole (8 wk), felodipine (years), indapamide (2 yr), deer velvet (2 yr)</td>
<td></td>
<td>2.16/18 months</td>
<td>34</td>
<td>Incomplete recovery. Deer velvet (complementary therapy)</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>NA</td>
<td>8.18</td>
<td>Omeprazole (10 days), sotalol (yrs)</td>
<td></td>
<td>1.82/29 months</td>
<td>34</td>
<td>General aches, pains at presentation, dialysis (6 months)</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>1.02</td>
<td>2.84</td>
<td>Omeprazole (12 wk), bendrofluazide (yrs), atorvastatin (yrs), atenolol (yrs)</td>
<td></td>
<td>1.24/18 months</td>
<td>63</td>
<td>Presented with fever, polyuria, rechallenge with bendrofluazide no decline</td>
</tr>
<tr>
<td>5</td>
<td>82</td>
<td>1.02</td>
<td>3.63</td>
<td>Pantoprazole (months, intermittent)</td>
<td></td>
<td>1.93/36 months</td>
<td>34</td>
<td>PPI on irregular basis. Biopsy occasional eosinophil.</td>
</tr>
<tr>
<td>6</td>
<td>74</td>
<td>0.9</td>
<td>3.86</td>
<td>Omeprazole (6 months), ibuprofen, augmentin</td>
<td></td>
<td>1.02/24 months</td>
<td>67</td>
<td>Biopsy occasional eosinophil.</td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>0.9</td>
<td>6.48</td>
<td>Omeprazole (5 mo), creatinine (mg/dL) (max), phosphorus (mg/dL) (max), hemoglobin (Hb) (max)</td>
<td></td>
<td>0.8/4 months</td>
<td>36</td>
<td>Presented with fever, rash, constipation, diarrhea, malaise, hematuria</td>
</tr>
</tbody>
</table>

References:
- Simpson IJ. Nephrology 2006; 11:381 - 85
PPI induced AIN : Case Series

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Age</th>
<th>Baseline Cr (mg/dL)</th>
<th>Max Cr (mg/dL)</th>
<th>Tx at time of dx/duration</th>
<th>F/U Cr/months post presentation</th>
<th>F/U eGFR (mL/min)</th>
<th>F/U</th>
<th>Clinical Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>84</td>
<td>0.95</td>
<td>2.4</td>
<td>Omeprazole (6 months), bendrofluazide (yrs), metoprolol and prednisone (6 months)</td>
<td>1.58/3 months</td>
<td>34</td>
<td>34</td>
<td>Fasting hyperglycemia, proteinuria for 4 months</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
<td>1.25</td>
<td>4.2</td>
<td>Omeprazole (7 months), bendrofluazide (yrs), paroxetine (7 months), quinapril (yrs)</td>
<td>1.58/8 months, 1.36/12 months</td>
<td>41</td>
<td>41</td>
<td>Fasting hyperglycemia, hypothyroidism, labile hypertension, prednisone (6 months)</td>
</tr>
<tr>
<td>11</td>
<td>78</td>
<td>1.14</td>
<td>7.15</td>
<td>Omeprazole (18 months), recently doubled to 40 mg</td>
<td>1.33/18 months</td>
<td>41</td>
<td>41</td>
<td>Poor appetite, tired, unwell. No fever, polyuria, better after renal artery stent</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>1.02</td>
<td>4.65</td>
<td>Omeprazole 20 mg (8 months), metoprolol, diltiazem, doxazosin, simvastatin</td>
<td>2.04/10 months</td>
<td>26</td>
<td>26</td>
<td>Sudden decline in renal function, recovery after d/c PPI, no steroids</td>
</tr>
<tr>
<td>13</td>
<td>77</td>
<td>0.86</td>
<td>5.78</td>
<td>Omeprazole 20 mg (14 months), indapamide, methotrexate</td>
<td>1.53/3 months</td>
<td>86</td>
<td>86</td>
<td>Presented with chills, malaise, fatigue, methotrexate not cause</td>
</tr>
<tr>
<td>14</td>
<td>77</td>
<td>0.85</td>
<td>5.9</td>
<td>Omeprazole 40 mg (7 months, dose incr 3 months), candasartan, felodipine, metoprolol</td>
<td>1.53/3 Months</td>
<td>36</td>
<td>36</td>
<td>Anorexia, nausea, fatigue, eosinophils in biopsy - interstitial infiltrate, 2% WBC in urine sediment</td>
</tr>
</tbody>
</table>

Question 2

All of the following statements are true regarding PPI induced AIN except:
- A. AIN is an immune mediated response
- B. AIN can present with anorexia and weakness.
- C. PPI induced AIN occurs in the first few days.
- D. The gold standard for diagnosis is a renal biopsy.
- E. Treatment of PPI induced AIN can include use of corticosteroids.