Pharmacotherapy for Ischemic Stroke Prevention

Henry Cohen, MS, PharmD, FCCM, BCPP, CGP
Professor of Pharmacy Practice
Arnold & Marie Schwartz College of Pharmacy and Health Sciences of Long Island University
And
Chief Pharmacotherapy Officer
Director of Pharmacy Residency Programs (PGY-1 & PGY-2)
Departments of Pharmacy and Medicine
Kingsbrook Jewish Medical Center

Disclosure

- Dr. Cohen discloses that he is a member of the speaker’s bureau for Boehringer-Ingelheim.
Epidemiology of Stroke

- 3rd leading cause of death in the USA
- 1 of every 15 deaths are due to stroke
- 750,000 strokes annually
- 150,000 deaths annually
- Most common debilitating neurologic disorder
- Of all those surviving a stroke for 3 months
 - 50% will live for 5 years and 30% will live for 10 years
 - 60% recover with self care and 20% require institutional care

Clinical Presentation of an Acute Ischemic Stroke

- Limb weakness
- Paralysis
- Hemiparesis
- Sensory complaints
 - paresthesias
 - numbness
- Facial weakness
- Aphasia
- Visual loss
- Headaches
- Seizures
- Confusion
- Lightheadedness, vertigo
- Ataxia
- Nausea and vomiting
- Photophobia
- Hearing loss
Stroke Subtypes

Modifiable Risk Factors in Ischemic Stroke

- Hypertension
 - Systolic > diastolic
- Atrial fibrillation
- Mitral stenosis or mitral annular calcification
- LAH or LVH
- History of MI
- CHF, Endocarditis
- Carotid bruits
- Prosthetic cardiac valves

- Hyperlipidemias
- Sickle Cell Disease
- Increased hematocrit
- Increased platelets
- Hyperhomocysteinemia
- Migraines
- Obesity
- Stress
- Sedentary lifestyle
Pharmacokinetics of Oral Thiazides and Thiazide-like Diuretics

<table>
<thead>
<tr>
<th>Name</th>
<th>t½ (hours)</th>
<th>Duration of effect (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorthalidone</td>
<td>40</td>
<td>24 – 72</td>
</tr>
<tr>
<td>Hydrochlorothiazide</td>
<td>5.6 – 14.8</td>
<td>6 – 12</td>
</tr>
<tr>
<td>Indapamide</td>
<td>~ 14</td>
<td>24 – 36</td>
</tr>
<tr>
<td>Metolazone</td>
<td>nd</td>
<td>12 – 24</td>
</tr>
</tbody>
</table>

Modifiable Risk Factors Further Impact Stroke Risk

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Stroke Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>1.8x to 6x ↑</td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td>2x ↑</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2x ↑</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>5x ↑</td>
</tr>
<tr>
<td>Exercise</td>
<td>Vigorous exercise ↓ by 14% to 18%</td>
</tr>
</tbody>
</table>
Drug-Induced Risk Factors for Ischemic Stroke

- Phenylephrine
- Pseudoephedrine
- Phenylpropanolamine
 - Cigarette Smoking
 - Risk for Women > men
- Estrogen > 50 mcg/qd
- Demulen 1/50
- Ortho Novum 1/50
- Ovcon-50
- Nelova 1/50

- Cocaine and Crack
 - Esp. men < 45-yo
- Heroin
- Amphetamines
- LSD
- PCP
- Alcohol
 - Habitual or binge

Circadian Incidence CVAs

No. of events n=1167

Marler et al, 1989
Alcohol and Ischemic Stroke
Northern Manhattan Stroke Study

TIA/Stroke Survivor’s Greatest Risk is Stroke, not MI

Recurrence of Events in Antiplatelet Trials in TIA and Ischemic Stroke Patients

<table>
<thead>
<tr>
<th>Trial</th>
<th>Stroke</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATS¹</td>
<td>13.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>TASS¹</td>
<td>12.5%</td>
<td>6.5%</td>
</tr>
<tr>
<td>CAPRIE¹+¹</td>
<td>10.0%</td>
<td>1.5%</td>
</tr>
<tr>
<td>ESPS-2¹</td>
<td>12.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>ATC²</td>
<td>8.3%*</td>
<td>1.7%*</td>
</tr>
</tbody>
</table>

N=1,053 N=3,069 N=6,431 N=6,602 N=22,803

*Nonfatal only
¹Stroke patient subgroup only (n = 6,431)
TIA/Stroke Survivor’s Greatest Risk is Stroke, not MI

% patients with prior stroke with a secondary ischemic event (n=225)

- 77.8%
- 20.4%

% patients with prior MI with a secondary ischemic event (n=565)

- 81.1%
- 15.2%

Secondary Prevention of Ischemic Stroke

What is the cause of the initial cerebrovascular event?

- Small or large vessel lacunar
- Unknown
- Cardioembolic

Antiplatelet therapy

Warfarin and Dabigatran
Short-term Prognosis Following Transient Ischemic Attack

Aspirin Therapy

- Dose has not been determined
 - Studies utilized 30 – 1.5g daily
- Generally doses 50 - 325 mg qd recommended
- Aspirin Triad - Bronchospasm
 - Asthma, rhinitis, nasal polyps
- High doses increases blood pressure
- Gastropathy
 - Preventable with PPIs or misoprostol
Aspirin Efficacy by Dose: Meta-Analyses in Patients With Stroke or TIA*

<table>
<thead>
<tr>
<th>Dose (mg/day)</th>
<th>RRR (%) ± 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 – 100</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>75 – 300</td>
<td></td>
</tr>
<tr>
<td>900 – 1500</td>
<td></td>
</tr>
<tr>
<td>650 – 1500</td>
<td></td>
</tr>
</tbody>
</table>

* Endpoint: stroke, MI, or vascular death.

Aspirin Dose and Admission for Ulcer Bleeding

<table>
<thead>
<tr>
<th>Aspirin Dose</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mg (n=27)</td>
<td>2.3 (1.2–4.4)</td>
</tr>
<tr>
<td>150 mg (n=22)</td>
<td>3.2 (1.7–6.5)</td>
</tr>
<tr>
<td>300 mg (n=62)</td>
<td>3.9 (2.5–6.3)</td>
</tr>
</tbody>
</table>

- Bleeding risk is the same regardless of use of plain, buffered, or enteric-coated aspirin

Risk Factors for Serious Upper GI Events With NSAID Use

- Prior complicated ulcer
- Advancing age (> 65 years)
- Concomitant anticoagulant use
- Concomitant corticosteroid use
- Concomitant aspirin use (including low-dose)
- Concomitant SSRI use
- Multiple NSAID use
- High-dose NSAIDs
- Selection of NSAID (eg, etodolac or nabumetone vs ketorolac, indomethacin, or piroxicam)

SSRIs and NSAIDs Pharmacodynamic Drug Interactions

Case-control analysis:
11,261 cases of GI bleeding and 53,156 controls

<table>
<thead>
<tr>
<th>Odds Ratio for GI bleeding</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any NSAID alone</td>
<td>2.15</td>
</tr>
<tr>
<td>Any SSRI alone</td>
<td>2.38</td>
</tr>
<tr>
<td>NSAID + SSRI</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Study suggests that the risk of GI bleeding is not substantially increased during concomitant NSAID and SSRI use compared with their use alone

Aspirin Dosage: Not All Patients Are Created Equal

Aspirin-Resistant Population
Up to 25% of Aspirin Users Are Resistant
Only the higher doses of aspirin may be efficient for CV prevention in certain patients.

Ibuprofen interferes with aspirin access to the serine binding site

CAPRIE Study Design

CAPRIE: Efficacy of Clopidogrel vs Aspirin in MI, Ischemic Stroke, or Vascular Death

- **Prospective, randomized, blinded**
- **19,185 patients with atherosclerotic vascular disease**
- **Recent ischemic stroke (≤6 mo.)**
- **Recent MI (≤35 d)**
- **Established peripheral arterial disease**
- **Clopidogrel bisulfate: 75 mg qd**
- **Aspirin: 325 mg qd**
- **Up to 3 yrs (mean 1.6 yr)**
- **304 in 16 countries, including the US**

ITT analysis.

CAPRIE: Results for Patient Subpopulations

Relative Risk Reduction (%) for combined end point of stroke MI or vascular death

Stroke 7.3
MI -3.7
PAD 23.8
Combined 8.7

-40
Aspirin better
40
Clopidogrel better

A test of heterogeneity was statistically significant (p=0.042)

CAPRIE: Safety

<table>
<thead>
<tr>
<th>% Patients</th>
<th>Clopidogrel (n=9,599)</th>
<th>Aspirin (n=9,569)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigestion/nausea/vomiting</td>
<td>15.0</td>
<td>17.6*</td>
</tr>
<tr>
<td>GI hemorrhage</td>
<td>2.0</td>
<td>2.7*</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4.5*</td>
<td>3.4</td>
</tr>
<tr>
<td>Rash</td>
<td>6.0*</td>
<td>4.6</td>
</tr>
<tr>
<td>Abnormal liver function</td>
<td>3.0</td>
<td>3.2*</td>
</tr>
<tr>
<td>Any bleeding disorder</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*p<0.05

Management of Atherothrombosis with Clopidogrel in High-risk Patients (MATCH): Trial Design

<table>
<thead>
<tr>
<th>Study design</th>
<th>507 clinical centers in 28 countries; randomized, double-blind, placebo-controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>7,599 patients (\geq) 40 yr (mean age 66.3 yr) with recent (within 90 days of study entry) TIA or ischemic stroke and a high risk of recurrent ischemic events</td>
</tr>
<tr>
<td>Study drugs</td>
<td>Clopidogrel (75 mg/day) plus aspirin (75 mg/day) vs. clopidogrel (75 mg/day) plus placebo</td>
</tr>
<tr>
<td>Primary endpoint</td>
<td>Ischemic stroke, MI, vascular death or rehospitalization for acute ischemic event or urgent revascularization or TIA</td>
</tr>
<tr>
<td>Secondary endpoint</td>
<td>Outcome clusters of primary endpoints, any death or any stroke</td>
</tr>
<tr>
<td>Treatment duration</td>
<td>Treatment and follow-up period 1.5 yr</td>
</tr>
</tbody>
</table>

MATCH: Number of Patients with Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Clopidogrel (n=3,802)</th>
<th>Clopidogrel + ASA (n=3,797)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>319 (8.4%)</td>
<td>299 (7.9%)</td>
</tr>
<tr>
<td>MI</td>
<td>62 (1.6%)</td>
<td>59 (1.6%)</td>
</tr>
<tr>
<td>Other CV Death</td>
<td>74 (1.9%)</td>
<td>69 (1.8%)</td>
</tr>
<tr>
<td>Death</td>
<td>181 (4.8%)</td>
<td>169 (4.5%)</td>
</tr>
<tr>
<td>Rehospitalization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All results not statistically significant.

MATCH: Safety

Bleeding Complications

- Clopidogrel (n=3,781)
- Clopidogrel + ASA (n=3,759)

<table>
<thead>
<tr>
<th>Minor</th>
<th>Major</th>
<th>Life-threatening</th>
<th>Major + Life-threatening</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>96</td>
<td>71</td>
<td>169</td>
<td>289</td>
</tr>
<tr>
<td>1.0%</td>
<td>2.6%</td>
<td>1.9%</td>
<td>4.5%</td>
<td>7.7%</td>
</tr>
<tr>
<td>3.2%</td>
<td>0.6%</td>
<td>1.3%</td>
<td>1.9%</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>73</td>
<td>49</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

p<0.0001 for all hemorrhagic complications categories.

Atorvastatin Reduces the Ability of Clopidogrel to Inhibit Platelet Aggregation

- Clopidogrel is an inactive prodrug
 - 85% hydrolyzed to an inactive carboxylic acid
 - 15% via CYP3A4 to an active metabolite
- Atorvastatin is a CYP3A4 substrate
 - Not a known CYP inhibitor
STUDY 1

Clopidogrel
- (n=16)
 - 92±5
 - p < 0.0001

Clopidogrel + Pravastatin
- (n=9)
 - 34±23
 - p < 0.0001

Clopidogrel + Atorvastatin
- (n=19)
 - 77±15
 - p = ns

Atorvastatin Dose
- 0 mg
 - 34±23
 - p = 0.002

- 10 mg
 - 58±15
 - p = 0.001

- 20 mg
 - 74±10
 - p = 0.027

- 40 mg
 - 89±7
 - p = 0.001

p = 0.027
- 0 mg
 - 34±23
 - p = 0.002

p = 0.001
- 10 mg
 - 58±15
 - p = 0.027

p = 0.027
- 20 mg
 - 74±10
 - p = 0.001

p = 0.001
- 40 mg
 - 89±7
 - p = 0.027
Clopidogrel Metabolism

Clopidogrel

Hydrolysis 85%

CYP-3A4

Inactive Carboxylic Acid Derivative

CYP-2C19

2-oxo-clopidogrel Thiol

P2Y12 inhibitory G-protein coupled Receptor is target of ADP-Inhibitors

Alleles

G52T

C139T

T744C

C34T (4-fold higher risk of stroke)

Adverse Outcomes Associated With Clopidogrel and PPI following ACS

- Retrospective VA study in 127 centers
- 8205 ACS patients followed after discharge; omeprazole and rabeprazole studied
- Chart reviews and pharmacy records for 30 months
- No misclassification bias

<table>
<thead>
<tr>
<th>Outcome following hospital discharge for ACS</th>
<th>Clopidogrel (n = 2961)</th>
<th>Clopidogrel + PPI (n = 5244)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death or Rehospitalization</td>
<td>20.8%</td>
<td>29.8%</td>
<td>1.25 (1.11-1.41)</td>
</tr>
<tr>
<td>Rehospitalization for ACS</td>
<td>6.9%</td>
<td>14.6%</td>
<td>1.86 (1.57-2.20)</td>
</tr>
<tr>
<td>Revascularization Procedures</td>
<td>11.9%</td>
<td>15.5%</td>
<td>1.49 (1.30-1.71)</td>
</tr>
<tr>
<td>Death (all cause)</td>
<td>16.6%</td>
<td>19.9%</td>
<td>0.91 (0.80-1.05)</td>
</tr>
</tbody>
</table>

Ho MP, et al. JAMA. 2009;301937-944
Elimination Profiles of Substrate Drugs

<table>
<thead>
<tr>
<th>PPI</th>
<th>Elimination</th>
<th>2C19 Inhibitory Potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esomeprazole</td>
<td>2C19 (80%) and 3A4</td>
<td>++</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>2C19 (80%) and 3A4</td>
<td>+++</td>
</tr>
<tr>
<td>Lansoprazole</td>
<td>2C19 and 3A4 (unknown percentages)</td>
<td>++++++</td>
</tr>
<tr>
<td>Rabeprazole</td>
<td>2C19 and 3A4 (unknown percentages)</td>
<td>+++</td>
</tr>
<tr>
<td>Pantoprazole</td>
<td>2C19 (main) and 3A4 (unknown percentages)</td>
<td>+</td>
</tr>
<tr>
<td>H-2 Antagonists</td>
<td>Renal</td>
<td></td>
</tr>
<tr>
<td>Misoprostol</td>
<td>Metabolized in GI Tract; 80% renal</td>
<td></td>
</tr>
<tr>
<td>Dipyridamole ER/ASA</td>
<td>Glucuronidation</td>
<td></td>
</tr>
</tbody>
</table>

CYP450-2C19 Polymorphisms

- CYP-2C19*1 is the active wild type allele
 - Extensive metabolizers
- CYP-2C19*2 and CYP-2C19*3 are inactive variant alleles
 - 30% Asians are poor metabolizers (PMs)
 - 10% African Americans PMs
 - 5% Caucasians are PMs
 - *2 is found in 13% of Caucasians
 - *2 is found 35% of Asians
 - *3 is found in almost all Asians
 - *3 rare in Caucasians
Clopidogrel Dosing Strategies for 2C19 PMs

- Boxed Warning (March 2010)
 - 50% decreases in activity
 - Tests to identify 2C19 variant alleles are available
- Poor Metabolizers (2C19*2 or *3)
 - 600 mg LD
 - 150 mg daily

ESPS-2: Study Design

- Multicenter, randomized, double-blind, placebo-controlled trial
- 6,602 patients randomized within 3 months of qualifying event (TIA or stroke)
- Treatment and follow-up time: 2 years
 - Visits at 1 month and 3 months, then at 3-month intervals

ESPS-2: Treatment Arms

N = 6,602

- Placebo (n = 1,649)
- ASA 25 mg bid (n = 1,649)
- ER-DP 200 mg bid (n = 1,654)
- ASA/ER-DP 25 mg ASA/200 mg ER-DP bid (n = 1,650)

ESPS-2 Results: Cumulative Stroke Rate

Relative Risk Reduction

- Placebo
- ER-DP
- ASA
- ASA/ER-DP

22% \(P=0.008\)
37% \(P<0.001\)
ESPS-2 Results: RRR for All Strokes

![Graph showing RRR vs Placebo (%)]

ASA ER-DP
- **18.9%** $P = 0.009$
- **16.5%** $P = 0.036$

ASA/ER-DP
- **36.8%** $P < 0.001$

ESPS 2:
ASA/ER-DP Significantly Reduces the Risk of Stroke over ASA Alone

![Bar chart showing total number of events (2-year follow-up)]

ASA (n=1,649)
- Stroke (23% RRR): 206, 12.5%
- MI (13% RRR): 39, 2.4%

ASA/ER-DP (n=1,650)
- Stroke (23% RRR): 157, 9.5%
- MI (13% RRR): 35, 2.1%

*p=0.006
ESPS 2: Safety

Aspirin and Extended Release Dipyridamole

- A combination extended release gelatin capsule containing a DP:ASA ratio of 8:1
 - 200 mg extended release dipyridamole bid
 - 25 mg immediate release ASA bid
 - Combo is more effective than either agent alone
- The inhibition of adenosine uptake is dose dependent at levels of 0.5 – 2 mcg/mL
- Cmax = 2 mcg/mL; Cmin = 0.5 mcg/mL

<table>
<thead>
<tr>
<th></th>
<th>ER-DP (%)</th>
<th>ASA (%)</th>
<th>ASA + ER-DP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>37.2*</td>
<td>33.1</td>
<td>38.2</td>
</tr>
<tr>
<td>GI complaints</td>
<td>30.5</td>
<td>30.4</td>
<td>32.8+</td>
</tr>
<tr>
<td>Dizziness</td>
<td>30.1</td>
<td>29.2</td>
<td>29.5</td>
</tr>
<tr>
<td>Bleeding (any site)</td>
<td>4.7</td>
<td>8.2*</td>
<td>8.7*</td>
</tr>
<tr>
<td>Severe or fatal bleeding</td>
<td>0.4</td>
<td>1.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

*p<0.001 compared with placebo
+*p=0.042 compared with placebo

ASA and ER Dipyridamole Pharmacokinetics

- 99% bound to albumin and alpha-1 acid glycoproteins
- $T_{1/2} = 13$ hours
- Dipyridamole is released over 7 – 8 hours
- Dipyridamole is eliminated via conjugation and glucuronidation
 - Monoglucuronide metabolite is weak
 - Negligible renal elimination

Aspirin and Extended Release Dipyridamole

- Extended release and not prompt release product is effective and recommended
 - Tartaric acid in ER product
 - 50% increase in bioavailability
- Dipyridamole 75 – 100 mg indicated as an adjunct to warfarin for prevention of postoperative thromboembolic complications of cardiac valve replacement
- The aspirin in this product may not be enough to treat cardiac indications (50 mg)
- Dipyridamole is a potent vasodilator
 - Chest pain in patients with unstable angina

"Results: Headache episodes, being mostly mild and transient, rapidly declined from 67% of the volunteers on the first day of treatment to 3% on the final days of treatment."
Ticlopidine Adverse Effects

- Bleeding incidence similar as with ASA
- Diarrhea
- Neutropenia
- Elevated LETs
 - Contraindicated with severe liver impairment
- Increases cholesterol and triglycerides by 10%
 - Effect is persistent throughout therapy
- Rash +/- pruritus and may progress to SJS/TEN
 - Onset is 11 days; occurs within 3 months

Ticlopidine and Clopidogrel-Induced Thrombotic Thrombocytopenic Purpura (TTP)

- Mechanism: autoantibodies (IgG) against a metalloprotease that degrades von Willebrand factor resulting in platelet microthrombi
- 1:1,600-4,000 with ticlopidine
 - Onset 3 – 4 weeks
- Many case reports with clopidogrel
 - 4 cases:1 million patients exposed
 - Onset 2 weeks
Ticlopidine and Clopidogrel-Induced TTP

- **Life-threatening**
 - Up to 30% mortality
- Treatment is supportive and plasma exchange
- **Presentation**
 - Thrombocytopenia
 - Hemolytic anemia
 - Renal dysfunction
 - Neurologic changes

- **Fever**
- Weakness or/and pallor
- Purpura or Petechiae
- Dark urine
- Seizures
- Dysarthria
- Jaundice
- **Schistocytes on smear**

Blood Smear With Cell Fragmentation (Schistocytes) & Thrombocytopenia

![Blood Smear With Cell Fragmentation](image)
Antiplatelet Agents vs Aspirin: Prevention of Stroke - Indirect Comparison Across Studies

* Statistically significant.
Adapted from Albers et al. *Chest*. 1998;114:683S.

Conclusions

- All patients with a non-cardioembolic stroke or TIA should receive an antiplatelet agent
- Initial choice may be:
 - Aspirin 50 – 325 mg
 - Aspirin/Dipyridamole ER
 - Clopidogrel
- ASA/ER DP is more effective than ASA (grade 1A)
- Clopidogrel is recommended in favor of ticlopidine because of a safer side effect profile
- Clopidogrel has not been shown to be more effective than ASA
- Clopidogrel plus aspirin for stroke prevention is not recommended