Pharmacokinetics of Oncology Drugs

Adrienne Smith-McGough, Pharm.D. BCOP
Associate Professor of Medicine, Section of Clinical Pharmacology
SUNY Upstate Medical University
Syracuse, New York

Learning Objectives

- Understand the importance of pharmacokinetics with the use of oncology drugs
- Monitor pharmacokinetic (PK) parameters with the use of oncology drugs
- Manage abnormal pharmacokinetics parameters with the use of oncology drugs

Definition of Pharmacokinetics

- "The quantitative analysis of the process of drug absorption, distribution, and elimination that determine the time course of drug action"
- "What the body does to the drug"
- ADME:
 - Absorption
 - Distribution
 - Metabolism
 - Excretion

Importance of Pharmacokinetics

- The clinical importance of PK (and PD) is based on the principle that concentration-response relationships are less variable than dose-response relationships for any specific drug
- Understanding interpatient variability in drug PK allows us to implement strategies to reduce variability and hopefully achieve more consistent clinical outcomes and maximize patient benefit

Factors than can affect PK

- Kidney function
- Hepatic function
- Age
- Body surface area (BSA)
- Concomitant medications
- Pharmacogenetic polymorphisms in drug-metabolizing enzymes

Additional factors that may alter PK in cancer patients

- Prior gastrointestinal surgery (if oral administration)
- Poor nutritional status
 - Hypoalbuminemia
- Polypharmacy
- Advanced age
- Altered renal or hepatic function
Effects of Altered Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Effect on Serum Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered absorption</td>
<td>Increased or decreased</td>
</tr>
<tr>
<td>Displacement from plasma</td>
<td>Increased</td>
</tr>
<tr>
<td>protein binding sites</td>
<td></td>
</tr>
<tr>
<td>Inhibition of metabolism</td>
<td>Increased</td>
</tr>
<tr>
<td>Induction of metabolism</td>
<td>Decreased</td>
</tr>
<tr>
<td>Altered renal excretion</td>
<td>Increased or decreased</td>
</tr>
</tbody>
</table>

Absorption

- Historically, most chemotherapy agents have been given intravenously
- In recent years the use of oral agents has grown and will continue to do so
- The PK parameter most closely associated with oral absorption is bioavailability (F)

Distribution

- The volume of distribution (Vd) relates to the amount of drug in the body to the concentration observed in the measured compartment
- Represents a constant of proportionality
- The rate and extent to which a drug distributes into tissues depends on many factors
- Drug lipophilicity
- Tissue permeability
- Tissue-binding constants
- Local organ blood flow

Metabolism

- Hepatic CYP system is the main site of drug metabolism for many oncology agents
- Many are cleared by the CYP3A4 system in the liver, although biotransformation can occur in the gut, lung, kidneys, blood and tumors
- Traditionally, drug-metabolizing processes have been divided into phase I and phase II reactions
- Typically generate more polar, biologically inactive metabolites
- CYPP450 system is the best characterized family of phase I drug-metabolizing enzymes

Absorption

- Oral bioavailability can be altered in cancer patients due to changes in the integrity of the gastrointestinal tract caused by chemotherapy side effects, surgery, radiation or nausea/vomiting

Distribution

- Chemotherapy agents can bind to several blood components
 - Albumin
 - Alpha 1 acid glycoprotein
 - Lipoproteins
 - Immunoglobulins
 - Erythrocytes
- Drug displacement from blood components or tissue-binding sites increases the apparent distribution volume
- Therapeutic implications of this have yet to be defined
Altered Metabolism - Cytochrome P450 system

- The Cytochrome (CYP) P450 system was discovered in the 1960’s when mouse hepatic microsomal cells were stained with pigment
- Pigment produced an unusual absorption “peak” at 450 nm on spectroscopy
- Hence
 - Cell = cyto
 - Color = chrome
 - Pigment = P
 - At 450 nm = 450

CYP’s are a superfamily of oxidases with nomenclature driven by location of corresponding gene on human genome

- Terminology
 - CYP = cytochrome P450
 - Number = gene family
 - Letter = gene subfamily
 - Number = individual gene
 - Example = CYP 3A4
- Known CYP’s: CYP 3A4/5, 2D6, 1A2, 2C9, 2C19, 2B6, 2A6, 2C8, 2E1

Characteristics of P450 subfamilies involved in drug metabolism:
- All are oxidases
- Polymorphisms exist commonly
- Varying amounts of an enzyme between populations in a species (ex. Asians vs. caucasians)
- All have specific substrates
 - Ex. Tamoxifen is oxidized by a CYP 2D enzyme, not a CYP 3A enzyme
 - Substrate redundancy between families

Impact of hepatic dysfunction on liver drug-metabolizing pathways can be difficult to assess
- Liver dysfunction can affect glucuronidation
- Cirrhosis can reduce drug-metabolizing capacity by 30-50%
- Malnutrition may also alter the hepatic clearance of drug

Certain chemotherapy agents are primarily cleared by the kidneys
- These agents, if not adjusted for impaired renal function can cause increased toxicity due to decreased drug elimination
Alkylating Agents

- Nitrogen mustards
 - Cyclophosphamide
 - 5-25% of drug excreted unchanged in the urine
 - In renal insufficiency, measurable changes in PK parameters have been demonstrated
 - GFR between 10-50 ml/min: Give 75% of usual dose
 - GFR < 10 ml/min: Give 50% of usual dose
 - Parent drug undergoes hepatic biotransformation (CYPs 2B6, 2C9, 3A4) to its active form
 - Bilirubin between 3-5 mg/dl: Reduce dose by 25%
 - Bilirubin > 5 mg/dl: Omit

- Monitoring
 - Baseline CBC (prior to therapy, at expected nadir, prior to next cycle or as appropriate)
 - Regular urinalysis for red blood cells which may precede hemorrhagic cystitis (especially important in patients with potentially altered excretion)

Alkylating Agents

- Nitrogen Mustards
 - Cyclophosphamide
 - Monitoring
 - CNS symptoms (somnolence, hallucinations and coma reported especially with altered clearance)
 - Urinalysis prior to each dose (hold therapy if hematuria noted)
 - Electrolytes (especially potassium for hypokalemia)
 - CBC at baseline and prior to each dose

Alkylating Agents

- Nitrogen mustards
 - Ifosfamide
 - 3-56% of parent drug excreted unchanged in the urine depending upon dose used
 - GFR between 10-50 ml/min: Decrease dose by 25%
 - GFR < 10 ml/min: Decrease dose by 50%
 - Like cyclophosphamide, must be activated via the CYP system to its active, cytotoxic component (4-hydroxy-ifosfamide)
 - Recommendations in any degree of hepatic failure are not available

Alkylating Agents

- Nitrogen mustards
 - Ifosfamide
 - Monitoring
 - CNS symptoms (somnolence, hallucinations and coma reported especially with altered clearance)
 - Urinalysis prior to each dose (hold therapy if hematuria noted)
 - Electrolytes (especially potassium for hypokalemia)
 - CBC at baseline and prior to each dose

Alkylating Agents

- Nitrosoureas
 - Carmustine
 - Rapidly degraded after given IV with no detectable drug noted after 15 minutes
 - 60-70% of total dose is excreted in the urine within 96 hours
 - No dosage adjustment suggested in renal impairment
 - Cytotoxic activity is likely due to metabolites, however metabolic pathways are not understood
 - No dosage adjustment recommended in hepatic impairment

- Monitoring
 - CBC (delayed bone marrow suppression)
 - Pulmonary function tests (pulmonary fibrosis and infiltrates reported with long term use and/or high doses)
 - LFT’s – hepatotoxicity usually reversible
Alkylating Agents

Alkyl sulfonates
- **Busulfan**
 - When given PO, absorption varies widely
 - Renal excretion is minimal
 - No dosage adjustment necessary in renal impairment
 - Predominantly metabolized by conjugation with glutathione which undergoes further oxidative processes in the liver
 - No suggestions for adjustment in hepatic impairment
 - Of note – use of busulfan with phenytoin results in decreased plasma concentrations of busulfan of up to 15%.

Alkylating Agents

Triazenes
- **Temozolomide (Temodar)**
 - Excellent bioavailability
 - Not studied in patients with mucositis or other alterations in GI mucosa
 - Spontaneously hydrolyzed in plasma to active components
 - No appreciable metabolism in the liver
 - Renal excretion is approximately 40%
 - Manufacturer advises to use caution in severe renal and hepatic impairment
 - Monitoring of CBC, liver function and CNS status recommended.

Alkylating Agents

Platinum analogues
- **Cisplatin**
 - Protein binding: 90%
 - Likely not clinically significant in hypoalbuminemia
 - Probably metabolized by non-enzymatic pathways to inactive metabolites
 - No adjustment in hepatic dysfunction
 - Renal excretion: Up to 45%
 - Usually try to avoid in renal impairment but can be used if necessary
 - GFR 10-50 ml/min: 75% of usual dose
 - GFR < 10 ml/min: 50% of usual dose

Alkylating Agents

Platinum analogues
- **Carboplatin**
 - Renal and total body clearance of carboplatin are reduced in renal impairment
 - Dose adjustments are necessary to avoid severe bone marrow toxicity
 - Calvert equation: Dose (mg) = Target (AUC) X (GFR + 25)
 - No dose alterations necessary in hepatic impairment
 - Monitoring
 - Mainly CBC with platelets once or twice between courses of therapy (in renal dysfunction a higher incidence of severe myelosuppression is seen)
Alkylating Agents

- **Platinum analogues**
 - **Oxaliplatin**
 - 70-95% protein bound
 - Primarily excreted via the kidneys, however no good in vivo data to offer dosing adjustments in renal impairment
 - In patients > 65 years of age, increased toxicity was seen
 - Rapidly metabolized in plasma (non-P450 mediated)
 - No dosage adjustment necessary in hepatic impairment
 - **Monitoring**
 - CBC prior to each chemotherapy cycle
 - Neurologic exam prior to each treatment course (acute and persistent peripheral neuropathy very common and exacerbated by cold)

Enzyme Inhibitors

Anthracyclines
- **Daunorubicin**
- **Doxorubicin**
- **Idarubicin**
- **Epirubicin**
 - Protein binding among agents varies
 - All are extensively metabolized by the P450 system (3A) and other tissues to active metabolites
 - Dose reductions absolutely necessary in hepatic impairment to avoid life-threatening toxicity
 - Renal excretion varies

Enzyme Inhibitors

Anthracyclines

<table>
<thead>
<tr>
<th>Anthracyclines</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC prior to each course of therapy</td>
<td></td>
</tr>
<tr>
<td>Cardiac monitoring – Evaluation of left ventricular ejection fraction (LVEF) prior to starting therapy</td>
<td></td>
</tr>
<tr>
<td>Various guidelines exist as to the frequency of monitoring after baseline, however LVEF function may be obtained prior to each dose in very high risk patients</td>
<td></td>
</tr>
</tbody>
</table>

Enzyme Inhibitors

<table>
<thead>
<tr>
<th>Anthracyclines</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC prior to each course of therapy</td>
<td></td>
</tr>
<tr>
<td>Cardiac monitoring – Evaluation of left ventricular ejection fraction (LVEF) prior to starting therapy</td>
<td></td>
</tr>
<tr>
<td>Various guidelines exist as to the frequency of monitoring after baseline, however LVEF function may be obtained prior to each dose in very high risk patients</td>
<td></td>
</tr>
</tbody>
</table>

Enzyme Inhibitors

Epipodophyllotoxins
- **Etoposide**
 - Absorption of oral etoposide varies widely; at high doses, bioavailability decreases
 - Highly protein bound
 - Known alterations in protein binding with low serum albumin
 - Clinical significance of this not known
 - Extensively metabolized via the liver
 - Dose modifications in hepatic impairment
 - Bilirubin 1.5-3.0 mg/dL: Decrease by 50%
 - Bilirubin > 3.1 mg/dL: Do not use
 - Monitoring
 - LFT’s: Especially with high dose therapy or in patients with altered elimination
 - CBC during therapy

Enzyme Inhibitors

Epipodophyllotoxins
- **Etoposide**
 - 40% of dose is excreted unchanged in urine
 - Dosage adjustments in renal impairment suggested
 - CrCl between 15-50 mL/min: Decrease dose by 25%
 - CrCl < 10 mL/min: Decrease dose by 50%
 - Monitoring
 - CBC during therapy

Enzyme Inhibitors

Epipodophyllotoxins
- **Etoposide**
 - 40% of dose is excreted unchanged in urine
 - Dosage adjustments in renal impairment suggested
 - CrCl between 15-50 mL/min: Decrease dose by 25%
 - CrCl < 10 mL/min: Decrease dose by 50%
 - Monitoring
 - CBC during therapy
Topoisomerase I inhibitors

- Camptothecins
- Irinotecan
 - Metabolized mainly in liver by carboxylesterase enzymes to highly active metabolite SN-38
 - SN-38 then conjugated to form a glucuronide metabolite by enzyme UDP-glucuronosyl transferase 1A1 (UGT1A1)
 - Genetic polymorphisms exist in this enzyme leading to reduced activity
 - 10% of the North American population has this homozygous allele
 - Can cause up to a four-fold risk of severe toxicity
 - Dosage reductions suggested, but no clear guidelines exist

- SN-38 then conjugated to form a glucuronide metabolite by enzyme UDP-glucuronosyl transferase 1A1 (UGT1A1)
- Genetic polymorphisms exist in this enzyme leading to reduced activity
- 10% of the North American population has this homozygous allele
- Can cause up to a four-fold risk of severe toxicity
- Dosage reductions suggested, but no clear guidelines exist

Topoisomerase Inhibitors

- Camptothecins
 - Irinotecan
 - In hepatic dysfunction
 - Higher AUC's noted, but no formal dose adjustments have been made
 - No dosage adjustment for renal insufficiency
 - Monitoring
 - Vital signs during and after infusion
 - Diarrhea (late onset): Monitor closely in elderly and in patients with impaired organ function
 - CBC: Frequently with suspected genetic polymorphism

- Metabolized mainly in liver by carboxylesterase enzymes to highly active metabolite SN-38
- SN-38 then conjugated to form a glucuronide metabolite by enzyme UDP-glucuronosyl transferase 1A1 (UGT1A1)
- Genetic polymorphisms exist in this enzyme leading to reduced activity
- 10% of the North American population has this homozygous allele
- Can cause up to a four-fold risk of severe toxicity
- Dosage reductions suggested, but no clear guidelines exist

Antimicrotubules

- Vinca Alkaloids
 - Vincristine
 - Vinblastine
 - Vinorelbine
 - All are extensively metabolized via the CYP 3A subfamily
 - Dosage adjustments necessary in hepatic impairment
 - Bilirubin 1.5-3.0 mg/dL: Decrease dose by 50%
 - Bilirubin > 3.1: Do not use
 - Minimal renal excretion
 - No dosage adjustment recommended in renal impairment

- Vincristine
 - Frequent monitoring for neurologic toxicity (paralytic ileus, paresthesia, numbness, sensory loss, loss of deep tendon reflexes) – toxicity is cumulative

- Vinblastine and vinorelbine
 - CBC with platelets
 - Neurologic toxicity MUCH less common than with vincristine

Antimicrotubules

- Taxanes
 - Paclitaxel
 - Highly protein bound (up to 98%)
 - Likely not clinically significant based upon available data
 - Extensively metabolized via the CYP 3A subfamily
 - Dose adjustments necessary in hepatic insufficiency
 - No dosage adjustment in renal insufficiency
 - Guidelines based on standard 3 hour infusion

- Bilirubin
 - Transaminase levels
Transaminase levels	Bilirubin	Recommended Dose
< 10X ULN AND	< or = 1.25 ULN	175 mg/m2
< 10X ULN AND	1.26-2X ULN	135 mg/m2
< 10X ULN AND	2.01-5X ULN	90 mg/m2
> or = 10X ULN OR	>5X ULN	Do not use
Antimicrotubules

- **Taxanes**
 - **Docetaxel**
 - Highly protein bound to various plasma proteins
 - Primarily metabolized in the liver via CYP 3A4 to active and inactive metabolites
 - Metabolic pathways not clearly elucidated
 - Dosage adjustment likely necessary in hepatic insufficiency although minimal guidelines exist
 - AST or ALT > ULN AND Alk Phos > 2.5 ULN: Do not give

- **Monitoring**
 - **Paclitaxel**
 - CBC with platelets
 - Peripheral neuropathy (increased risk with higher doses and total cumulative dose)
 - Musculoskeletal (arthralgia/myalgia) – increased risk with higher cumulative doses
 - **Docetaxel**
 - Edema – severe edema occurs more commonly in patients with elevated LFT’s
 - Nail changes – severe changes more common with elevated LFT’s
 - Mucositis
 - CBC with platelets – anemia, neutropenia and thrombocytopenia more severe with elevated LFT’s

Antimetabolites

- **Folate antagonists**
 - **Methotrexate**
 - Bioavailability varies widely (17-90%) depending upon dose given
 - Higher doses (40 mg/m²) are less well absorbed
 - Metabolism in via the liver and intracellular
 - Not well described; however dose adjustment suggested in hepatic impairment
 - Bilirubin > 3.0 mg/dL and AST < 180 IU: Give full dose
 - Bilirubin 3.1-5.0 mg/dL and AST > 180 IU: Give 75% of dose
 - Bilirubin > 5.0 mg/dL: Do not use

- **Monitoring**
 - **Serum methotrexate levels**
 - **Urine pH** (should be > 6.5 to facilitate excretion)
 - **Serum Cr and BUN daily**
 - **CBC with platlets** (bone marrow suppression may be more severe in patients with impaired renal function)

Antimetabolites

- **Purine analogs**
 - **Mercaptopurine**
 - Bioavailability ranges from 5-37%
 - Extensively metabolized after oral administration via intestinal and first-pass hepatic metabolism by two major pathways
 - In individuals with inherited deficiency of thiopurine methyltransferase (TMPT), the enzyme responsible for catabolism of mercaptopurine the dose should be decreased by 90% to avoid life-threatening toxicity
 - May need lower doses in renal and hepatic insufficiency, however no dosage guidelines exist
 - **Monitoring**
 - Weekly CBC with platelets
 - LFT’s weekly when starting therapy; if baseline hepatic impairment – monitor more frequently

Antimetabolites

- **Pyrimidine analogues**
 - **Cytarabine**
 - Converted intracellular to active drug
 - Extensively metabolized in the liver to inactive metabolite(s)
 - Reduce dose in liver impairment; no guidelines available
 - Approximately 80% (mainly metabolite) is excreted in the urine
 - Risk of toxicity (mainly neurologic) is directly related to renal function throughout therapy and dose adjustments are necessary (if CrCl < 60 ml/min)
Antimetabolites

- Pyrimidine analogues
 - Cytarabine
 - Dosage adjustments in renal impairment
 - Dose decrease
 - Once instead of twice daily dosing
 - Monitoring
 - CBC with platelets
 - LFT’s (high-dose therapy)
 - Renal function

<table>
<thead>
<tr>
<th>Serum Creatinine</th>
<th>Recommended Cytarabine Dose (High-dose therapy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.5 mg/dL</td>
<td>2-3 g/m²</td>
</tr>
<tr>
<td>1.5-1.9 mg/dL or ↑ from baseline by 0.5-1.2 mg/dL</td>
<td>1 g/m²</td>
</tr>
<tr>
<td>> or = 2.0 mg/dL or ↑ in Cr > 1.2 mg/dL</td>
<td>0.1 g/m²</td>
</tr>
</tbody>
</table>

Antimetabolites

- Pyrimidine analogs
 - Gemcitabine
 - Negligible protein binding
 - Phosphorylated intracellularly to active drug
 - Deaminated in liver and kidney to inactive metabolite
 - "Caution" recommended in renal and hepatic insufficiency, however no guidelines offered
 - In elderly, clearance is noted to be slower
 - Monitoring
 - Hematologic (mainly neutropenia), renal function

- Fluorouracil (5-FU)
 - Complex metabolism to active and inactive metabolites
 - 1-3% of population has deficiency in the enzyme dihydropteroate synthetase (DPS) which is partly responsible for catabolic pathway of 5-FU
 - Experience severe toxicity when given 5-FU
 - If bilirubin > 5.0 mg/dl: Alternative agent is recommended
 - Monitoring
 - CBC and platelets prior to each dose
 - LFT’s
 - GI

Antimetabolites

- Pyrimidine analogues
 - Capecitabine
 - Pro-drug of 5-FU: Crosses GI mucosal barrier unchanged; bioavailability information lacking
 - Converted to active form via liver and in tumor tissues
 - Active and inactive metabolites almost exclusively excreted renally
 - Dosing adjustments in renal impairment
 - CrCl > 30-50 ml/min: Dose reduce by 25%
 - CrCl < 30 ml/min: Contraindicated

Targeted Therapies

- Monoclonal Antibodies
 - Gemtuzumab
 - Alemtuzumab
 - Rituximab
 - Trastuzumab
 - Cetuximab
 - Panitumumab
 - As a general rule, these agents do not require any dosage adjustment based on altered PK parameters as they are not metabolized and elimination does not correlate with kidney function
Targeted Therapies

Tyrosine kinase inhibitors

- **Erlotinib (Tarceva)**
 - Bioavailability of 60% after oral administration
 - Primary route of clearance is hepatic metabolism via CYP 3A4 (minor 1A2) and biliary excretion
 - In hepatic impairment (no lab parameters specified), dose reductions in increments of 50 mg may be required
 - Clinical studies demonstrated no differences in PK between older and younger populations
 - Renal excretion is minimal
 - Monitoring parameters: LFT’s, PT/INR, renal function

- **Imatinib (Gleevec)**
 - Bioavailability of 98% after oral administration
 - Highly protein bound to albumin and alpha-1 acid glycoprotein
 - Likely not clinically significant
 - Extensively metabolized in the liver via CYP 3A4 to an active metabolite (and some minor inactive metabolites)
 - Eliminated predominantly in feces, mainly as metabolites
 - Minimal renal excretion

- **Sunitinib (Sutent)**
 - Bioavailability does not seem to be altered in the oncology population
 - 95% protein bound
 - Extensively metabolized via CYP3A4 in the liver to a primary active metabolite
 - Renal excretion: 13%
 - Dosage adjustment in hepatic insufficiency
 - No adjustment needed in Child-Pugh Class A or B
 - Not studied in Child-Pugh Class C

- **Lapatanib (Tykerb)**
 - Bioavailability is incomplete and variable
 - Highly protein bound (>99%) to albumin and alpha-1 acid glycoprotein
 - Extensive metabolism in the liver via CYP 3A4 and 3A5; additional minor metabolism occurs via 2C19 and 2C8 to oxidated metabolites
 - Mainly eliminated via fecal excretion
 - Minimal renal excretion
 - Dosing adjustments necessary in hepatic impairment
 - 750 mg/day in Child-Pugh Class C (usual dose is 1250 mg/day)
Targeted Therapies

- Tyrosine kinase inhibitors
 - Lapatinib
 - Monitoring
 - Magnesium and potassium; EKG (prolonged QT has been reported)
 - Hepatic function
 - Pulmonary function (interstitial lung disease and pneumonitis)
 - Left ventricular ejection fraction (baseline and every 8 weeks)

- Sorafenib (Nexavar)
 - Bioavailability: 38-49% on empty stomach
 - 99.5% protein bound
 - Extensive metabolism in the liver via CYP3A4 and glucuronidation to highly active metabolite and some minor metabolites
 - Major route of excretion: Feces
 - In hepatic impairment (Child Pugh Class A and B with hepatocellular carcinoma) dosage adjustment is not recommended, but close monitoring should be performed
 - Child Pugh Class C: Has not been studied

- Minimal renal excretion
 - No dosage adjustment necessary in renal impairment
 - In elderly (> 65 yrs) no dosage adjustment is necessary

- Monitoring
 - Blood pressure (hypertension): weekly for first six weeks, then periodically
 - Cardiac ischemia (may be higher in patients with hepatocellular carcinoma)
 - Hand-foot syndrome
 - Amylase and Lipase levels
 - CBC if indicated

Miscellaneous Agents

- Bortezomib (Velcade)
 - Not highly protein bound
 - Primarily metabolized in the liver via CYP 450 3A4, 2D6, 2C19, 2C9 and 1A2 to multiple metabolites
 - Extent of renal and other excretion unknown in humans
 - Dose adjustment in renal impairment is not necessary
 - Dose adjustment in hepatic impairment may be necessary as clearance may be decreased

- Monitoring
 - Frequent monitoring of CBC and platelets
 - Peripheral neuropathy
 - Cardiopulmonary symptoms

- Bleomycin
 - Extent of protein binding unknown
 - Metabolized primarily by the liver to at least one active metabolite
 - Approximately 50% renal excretion
 - Dosage adjustments in renal insufficiency necessary
 - Multiple guidelines exist

<table>
<thead>
<tr>
<th>Serum creatinine</th>
<th>% of full dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5-4.0 mg/dL</td>
<td>25%</td>
</tr>
<tr>
<td>4.1-6.0 mg/dL</td>
<td>20%</td>
</tr>
<tr>
<td>6.0-10 mg/dL</td>
<td>10%</td>
</tr>
</tbody>
</table>
Miscellaneous Agents

- Bleomycin
 - Monitoring
 - Mainly pulmonary function tests
 - Pre-therapy; every two months or at first sign of possible pulmonary toxicity

Miscellaneous Agents

- Thalidomide
 - Bioavailability not determined in humans
 - High protein binding (exact extent unknown)
 - Appears to go non-enzymatic hydrolysis in the plasma, however exact metabolism is not known
 - Minimal renal excretion
 - Dosage alteration in renal or hepatic impairment is not necessary
 - Monitoring: Thrombotic events, skin reactions, routine neurologic evaluations

Summary

- Stay current
- Have thorough and up to date references readily available at your practice site
 - Use list-serves
- Apply appropriate clinical judgement and monitoring when dosing chemotherapy in patients with known altered PK parameters

Questions