Update in Nutrition Literature

Jessie Winter, PharmD, BCPS
Clinical Pharmacy Specialist
Critical Care/Emergency Medicine
UC Health - University of Cincinnati Medical Center
Objectives

- Review literature supporting
 - Enteral nutrition (EN) versus Parenteral Nutrition (PN)
 - When to initiate nutrition
 - Early vs. late goal nutrition
 - Immunonutrition
 - Trace Elements

- Explain EN and PN goal rates and related calculations
Metabolism in Physiologic Stress

Stressor (Infection, trauma, surgery, etc.)

Proinflammatory cytokines (IL-1, IL-6, IL-8, TNF-alpha) → SIRS → Increased oxygen and energy demand

Counterregulatory hormones (cortisol, catecholamine, glucagon) → CATABOLISM

↑ Gluconeogenesis
↑ Glycogenolysis
↑ Lipolysis
↑ Proteolysis (skeletal muscle) → Mobilization of fatty acids, proteins, glucose

Peripheral-tissue resistance to endogenous anabolic hormones → Inability to utilize energy sources → Malnutrition

Nutritional Assessment

Functional GI Tract

Yes

Enteral Nutrition

GI Function

Normal

Standard Nutrients

Compromised

Specialty Formulas

Parenteral Nutrition

GI function returns

Yes

No

Calorie Requirements

- Indirect calorimetry
 - Measures oxygen consumption and carbon dioxide production
 - Respiratory Quotient (RQ)
 - Amount of substrate use: VCO2/VO2
 - RQ > 1 = overfeeding
 - RQ <0.8 = underfeeding
 - Calculates resting energy expenditures (REE)
 - 70-90% total energy expenditure

Calorie Requirements

• **Harris Benedict Equation**
 ▫ Men: $66 + 13.75(Wt \text{ in kg}) + 5(Ht \text{ in cm}) - 6.8(\text{age})$
 ▫ Women: $65 + 9.6(Wt \text{ in kg}) + 1.8(Ht \text{ in cm}) - 4.7(\text{age})$
 ▫ Multiply by stress factor of 1.2 – 2.0

• **Weight based predictions**

<table>
<thead>
<tr>
<th>Severity of Illness</th>
<th>Calorie needs (kcal/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>25-30</td>
</tr>
<tr>
<td>Critically Ill</td>
<td>30-40</td>
</tr>
<tr>
<td>Major Burn</td>
<td>35-40</td>
</tr>
</tbody>
</table>

ASPEN Clinical Guidelines *JPEN* 2011;35:16-204.
Protein and Fluid Requirements

- **Total Protein**
 - 24 hour nitrogen balance
 - Nitrogen Balance = nitrogen intake - nitrogen loss
 - Weight based predictions

<table>
<thead>
<tr>
<th>Severity of Illness</th>
<th>Protein Needs (g/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.8-1</td>
</tr>
<tr>
<td>Critically Ill</td>
<td>1.5-2</td>
</tr>
<tr>
<td>Catabolic</td>
<td>1.2-2</td>
</tr>
</tbody>
</table>

- **Total Fluid Requirements**
 - 25-35 mL/kg/day

Enteral vs. Parenteral Routes

• EN is the preferred route of feeding over PN.
 - (SCCM/ASPEN Grade B)

• EN should be initiated in the critically ill patient who is unable to maintain volitional intake.

http://www.bio.davidson.edu/courses/immunology/students/spring2006/mohr/celiac.html
Enteral vs. Parenteral Routes

- Reduces infectious morbidity
 - Pneumonia and central line infections
 - Abdominal abscess in trauma patients
- Variable effect on hospital LOS
EN Calculation

1. Calculate total kcal/day
2. Calculate total protein gram/day
3. Calculate total fluid requirement/day
4. Pick EN formulation best fit for your patient
 - Convert total kcal/day into goal rate
 - Dependent on product
 - If goal rate < goal total fluid requirement supplement with water down the feeding tube or intravenous fluid
5. Calculate protein/day pt receiving with goal rate
 - Supplement with protein packets if necessary to meet goal protein gram/day
Initiating Nutrition

- EN should be started early within the first 24-48 hours following admission
 - (Grade C SCCM/ASPEN)
- EN should advance toward goal over the next 48-72 hours
 - (Grade E SCCM/ASPEN)

Initiating Nutrition

- Early nutrition hypothesized risk
 - Suppressing autophagy
 - Increased risk for intestinal ischemia/necrosis

- EN should be withheld in the setting of hemodynamic compromise until the patient is fully resuscitated and/or stable.
 - (SCCM/ASPEN Grade E)
Initiating Nutrition

- Post-hoc analysis of the EPaNIC trial

- No randomized, prospective trials confirming zero nutrition on days 0-7 of ICU stay

Early Trophic vs. Goal EN

- Trophic vs. Full-Energy Enteral Nutrition in Mechanically Ventilated Patients with ARDS
 - Single center, open label, randomized
 - 200 patients mechanically ventilated ≥72 hours
 - Trophic vs. goal-directed nutrition in first 6 days

Early Trophic vs. Goal EN

• Initial Trophic vs. Full Enteral Feeding in Patients with Acute Lung Injury (EDEN)
 ▫ 1000 patients, 44 hospitals
 ▫ Prospective RCT enrolled patients mechanically ventilated ≥ 48 hours with ALI
 ▫ 400 kcal/day vs. 1300 kcal/day

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Trophic Feeding (n=508)</th>
<th>Full Feeding (n=492)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator-free days, no. (95% CI)</td>
<td>14.9 (13.9-15.8)</td>
<td>15.0 (14.1-15.9)</td>
<td>0.89</td>
</tr>
<tr>
<td>ICU-free days, no. (95% CI)</td>
<td>14/4 (13.4-15.3)</td>
<td>14.7 (13.8-15.6)</td>
<td>0.67</td>
</tr>
<tr>
<td>60-day mortality, no. (%) [95% CI]</td>
<td>118 (23.2)[96-29.9]</td>
<td>109 (22.2)[18.5-25.8]</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Early Trophic vs. Goal EN

- Avoid mandatory full caloric feeding in the first week but rather suggest low dose feeding (e.g., 500 calories per day), advancing only as tolerated
 - (SCC Grade 2B)
What if EN can’t get to goal?

- Consider initiating PN if unable to meet energy requirements after 7-10 days with EN
 - (SCCM/ASPEN Grade E)

- In patients who cannot meet energy requirements by day two should be supplemented with PN at a level, but no exceeding goal
 - (ESPEN Grade C)

ASPEN Clinical Guidelines *JPEN* 2011;35:16-204.
PN Macronutrient Calculations

<table>
<thead>
<tr>
<th>Substrate</th>
<th>% Total kcal/day</th>
<th>Kcal Supplied</th>
<th>Base Solution Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextrose</td>
<td>50-60%</td>
<td>3.4 kcal/gram dextrose</td>
<td>Dextrose 70% Injection (70 g/100 ml)</td>
<td>Carbohydrate tolerance ranges from 2-7 mg/kg/min Not to exceed 7 g/kg/day</td>
</tr>
<tr>
<td>(Carbohydrate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino Acids</td>
<td>10-20%</td>
<td>4 kcal/gram protein</td>
<td>Aminosyn II 15% (15 g/100ml)</td>
<td>6.25 grams protein per gram nitrogen</td>
</tr>
<tr>
<td>(Protein)</td>
<td>(1.5-2.5 g/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid</td>
<td>20-30%</td>
<td>9 kcal/gram fat</td>
<td>Liposyn III 30% (30 g/100 ml)</td>
<td>Not to exceed 30% of total kcals or 1.5 g/kg/day</td>
</tr>
<tr>
<td>(Fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PN Macronutrient Calculations

1. Calculate Total kcal/day requirement
 ▫ 25-35 kcal/kg/day
2. Calculate total grams protein/day requirement
 ▫ 1.5-2 g/kg/day
3. Convert grams protein/day to kcal protein
 ▫ 4 kcal/gram protein
4. Determine proportion of remainder kcal dedicated to dextrose (50-60%)
 ▫ Total kcal/day × 0.5-0.6 = kcal dextrose
5. Determine remaining amount of kcals = kcals lipid
 ▫ Total kcals/day – protein kcals – dextrose kcals = kcals lipid
PN Macronutrient Calculations

6. Convert kcal dextrose into grams
 ▫ 3.4 kcal/gram

7. Convert kcal lipid into grams
 ▫ 9 kcal/gram

8. Calculate fluid requirement
 ▫ 25 mL/kg/day ÷ 24 hours/day = goal rate mL/hr

9. Calculate macronutrient concentrations (g/L)
 ▫ Grams protein/total daily fluid requirement
 ▫ Grams dextrose/total daily fluid requirement
 ▫ Grams lipid/total daily fluid requirement

● Other considerations
 ▫ Estimate electrolyte requirements (or use standards)
 ▫ Begin slow, titrate to goal over 2-3 days
 ▫ Monitor for ability to transition to enteral or regular diet
What if we can’t get to goal?

• Early Parenteral Nutrition Completing Enteral Nutrition in Adult Critically Ill Patients (EPaNIC)
 ▫ Prospective multicenter (7 ICU) RCT
 ▫ Patients with NRS ≥ 3 not chronically malnourished
 • Early - 20% dextrose + EN+PN at day 3 for full caloric goal
 • Late - 5% dextrose + EN regardless of caloric goal until day 7

• Primary end point
 ▫ Duration of dependency on intensive care (# ICU days)
 ▫ Time to discharge from the ICU

EPaNiC

<table>
<thead>
<tr>
<th>Variable</th>
<th>Late-Initiation Group (N = 2328)</th>
<th>Early-Initiation Group (N = 2312)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vital status — no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharged live from ICU within 8 days</td>
<td>1750 (75.2)</td>
<td>1658 (71.7)</td>
<td>0.007</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In ICU</td>
<td>141 (6.1)</td>
<td>146 (6.3)</td>
<td>0.76</td>
</tr>
<tr>
<td>In hospital</td>
<td>242 (10.4)</td>
<td>251 (10.9)</td>
<td>0.63</td>
</tr>
<tr>
<td>Within 90 days after enrollment†</td>
<td>257 (11.2)</td>
<td>255 (11.2)</td>
<td>1.00</td>
</tr>
<tr>
<td>Nutrition-related complication — no. (%)</td>
<td>423 (18.2)</td>
<td>434 (18.8)</td>
<td>0.62</td>
</tr>
<tr>
<td>Hypoglycemia during intervention — no. (%)‡</td>
<td>81 (3.5)</td>
<td>45 (1.9)</td>
<td>0.001</td>
</tr>
<tr>
<td>Primary outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of stay in ICU§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (interquartile range) — days</td>
<td>3 (2–7)</td>
<td>4 (2–9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Duration >3 days — no. (%)</td>
<td>1117 (48.0)</td>
<td>1185 (51.3)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hazard ratio (95% CI) for time to discharge alive from ICU</td>
<td>1.06 (1.00–1.13)</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

EPaNIC

Secondary outcome

<table>
<thead>
<tr>
<th>New infection — no. (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>531 (22.8)</td>
<td>605 (26.2)</td>
<td>0.008</td>
</tr>
<tr>
<td>Airway or lung</td>
<td>381 (16.4)</td>
<td>447 (19.3)</td>
<td>0.009</td>
</tr>
<tr>
<td>Bloodstream</td>
<td>142 (6.1)</td>
<td>174 (7.5)</td>
<td>0.05</td>
</tr>
<tr>
<td>Wound</td>
<td>64 (2.7)</td>
<td>98 (4.2)</td>
<td>0.006</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>60 (2.6)</td>
<td>72 (3.1)</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Inflammation

<table>
<thead>
<tr>
<th>Median peak C-reactive protein level during ICU stay (interquartile range) — mg/liter</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>190.6 (100.8–263.2)</td>
<td>159.7 (84.3–243.5)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical ventilation

<table>
<thead>
<tr>
<th>Median duration (interquartile range) — days</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (1–5)</td>
<td>2 (1–5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration >2 days — no. (%)</td>
<td>846 (36.3)</td>
<td>930 (40.2)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard ratio (95% CI) for time to definitive weaning from ventilation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.06 (0.99–1.12)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tracheostomy — no. (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>134 (5.8)</td>
<td>162 (7.0)</td>
<td></td>
<td>0.08</td>
</tr>
</tbody>
</table>

Immunonutrition

- Nutrition that includes immune enhancing compounds
- AKA Neutraceuticals
 - Arginine
 - Essential amino acid (5.4% diet)
 - Effects in wound healing, high nitrogen balance
 - Nucleotides
 - Serve as catalysis, transfer of energy, and replication of rapidly dividing cells
 - 1-2 grams/day (animal protein, peas, yeast, beans, milk)
 - Glutamine
 - Omega-3 polyunsaturated fatty acids
 - Eicosapentaenoic acid (EPA)
 - Docosahexaenoic acid (DHA)

Glutamine

- Essential amino acid
 - Oxidative fuel for rapidly replicating cells
 - Enterocytes and colonocytes
 - Protective/restorative influence on the GI tract
 - 10% diet (5-9 grams of protein/day)
- Essential role in nitrogen shuttle
- Precursor component to glutathione (antioxidant)
- Stored in
 - Skeletal muscle tissue
 - Liver - constituent amino acid aids in visceral protein production
 - Kidney - substrate for renal ammonia production

Glutamine and Selenium

- Glutamine, Selenium, or both, to supplement parenteral nutrition for critically ill (SIGNET)
 - 10 Scottish ICUs, prospective randomized trial
 - 502 patients requiring ≥ 50% nutritional requirement met by parenteral nutrition and expected ICU stay ≥ 48 hours
 - Patients received either:
 - Glutamine (20.2 grams)
 - Selenium (500 mcg)
 - Combo vs. Placebo
 - Primary outcomes
 - Infections and mortality

SIGNET

Trial parenteral nutrition formulations

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Individual formulations</th>
<th>Combined groups</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glutamine (n=126)</td>
<td>Selenium (n=127)</td>
<td>Glutamine + selenium (n=124)</td>
<td>Neither (n=125)</td>
<td>Any glutamine (n=250)</td>
<td>Any non-glutamine (n=252)</td>
<td>Any selenium (n=251)</td>
</tr>
<tr>
<td>New infections*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All infections:</td>
<td>71 (56)</td>
<td>63 (50)</td>
<td>63 (51)</td>
<td>68 (54)</td>
<td>134 (54)</td>
<td>131 (52)</td>
<td>126 (50)</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.07 (0.75 to 1.53)</td>
<td>0.81 (0.57 to 1.15)</td>
<td></td>
</tr>
<tr>
<td>Confirmed infections†:</td>
<td>62 (49)</td>
<td>48 (38)</td>
<td>56 (45)</td>
<td>59 (47)</td>
<td>118 (47)</td>
<td>107 (42)</td>
<td>104 (41)</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.23 (0.86 to 1.76)</td>
<td>0.75 (0.52 to 1.08)</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within critical care or high dependency unit:</td>
<td>46 (37)</td>
<td>42 (33)</td>
<td>42 (34)</td>
<td>38 (30)</td>
<td>88 (35)</td>
<td>80 (32)</td>
<td>84 (33)</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.17 (0.80 to 1.71)</td>
<td>1.004 (0.69 to 1.47)</td>
<td></td>
</tr>
<tr>
<td>Within 6 months:</td>
<td>60 (48)</td>
<td>52 (41)</td>
<td>55 (44)</td>
<td>54 (43)</td>
<td>115 (46)</td>
<td>106 (42)</td>
<td>107 (43)</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.18 (0.82 to 1.70)</td>
<td>0.89 (0.62 to 1.29)</td>
<td></td>
</tr>
</tbody>
</table>

Glutamine and Selenium

• Glutamine and Antioxidants in Critically Ill Patients

• 1223 patients in 40 ICUs
 ▫ Glutamine supplementation (0.35 g/kg/day) provided IV with enteral glutamine (30g)
 ▫ Placebo
 ▫ With and without 500mcg selenium

• Primary outcome: 28 day mortality

Table 2. Odds Ratio for Death According to Study Agent.*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Antioxidants</th>
<th>Glutamine-Specific Odds Ratio with Antioxidants (95%)</th>
<th>Overall Adjusted Odds Ratio with Antioxidants (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td></td>
<td></td>
<td>1.09 (0.86–1.40)</td>
<td>0.48</td>
</tr>
<tr>
<td>Yes — no. of patients who died/total no. (%)</td>
<td>101/310 (32.6)</td>
<td>97/301 (32.2)</td>
<td>1.02 (0.72–1.43)</td>
<td></td>
</tr>
<tr>
<td>No — no. of patients who died/total no. (%)</td>
<td>89/307 (29.0)</td>
<td>76/300 (25.3)</td>
<td>1.20 (0.84–1.72)</td>
<td></td>
</tr>
<tr>
<td>Antioxidant-specific odds ratio with glutamine (95% CI)</td>
<td>1.18 (0.83–1.66)</td>
<td>1.40 (0.98–2.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall adjusted odds ratio with glutamine (95% CI)</td>
<td>1.28 (1.00–1.64)</td>
<td></td>
<td></td>
<td>0.05†</td>
</tr>
</tbody>
</table>
EPA and DHA

• Omega-3 polyunsaturated fatty acids
 ▫ \(\alpha\)-Linolenic acid (ALA)
 ▫ *Eicosapentaenoic acid (EPA)*
 ▫ *Docosahexaenoic acid (DHA)*

• Major component of the cell membrane
 ▫ Catalyst to dilation and contraction
 ▫ Inhibition and promotion of clotting
 ▫ Cell division and growth

• Found in fish oil, rape seed (canola oil)

EPA and DHA

- No direct effect on immune system
- Competes with arachidonic acid for COX metabolism
- Indirectly affects T-cell proliferation

Arachidonic Acid

- Prostaglandin H2
- Prostacyclins and Thromboxane
- Leukotrienes

COX; Cyclooxygenase
LOX; Lypooxygenase

OMEGA Trial

- OMEGA trial, JAMA 2011
 - 272 patients within 48 hours of ALI requiring mechanical ventilation
 - Received n-3 fatty acids, gamma-linolenic acid, and antioxidants vs. control
 - Enteral nutrition provided separately
 - Primary outcome: ventilator free days
- Ended at interim analysis for futility
- Criticized for bolus delivery method of supplements

Immunonutrition

<table>
<thead>
<tr>
<th>EN</th>
<th>kcal/mL</th>
<th>Protein g/L</th>
<th>CHO g/L</th>
<th>Fat g/L</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact ®</td>
<td>1.0</td>
<td>56</td>
<td>130</td>
<td>28</td>
<td>Immune-enhancing</td>
</tr>
<tr>
<td>Impact ® Fiber</td>
<td>1.0</td>
<td>56</td>
<td>140</td>
<td>28</td>
<td>High calorie</td>
</tr>
<tr>
<td>Impact ® Peptide1.5</td>
<td>1.5</td>
<td>94</td>
<td>140</td>
<td>63.6</td>
<td>Arginine, DHA/EPA, Dietary nucleotides</td>
</tr>
</tbody>
</table>

Supplement Dose

<table>
<thead>
<tr>
<th>Supplement</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutamine (PO)</td>
<td>15 g/packet</td>
</tr>
<tr>
<td>Glutamine (IV)</td>
<td>50g/1000mL</td>
</tr>
<tr>
<td>Fish Oil Omega-3 fatty acid</td>
<td>1000mg 1-4 times daily</td>
</tr>
<tr>
<td>Arginine</td>
<td>9.2 g/packet</td>
</tr>
</tbody>
</table>

Neslie®Nutrition Products
Trace Elements

<table>
<thead>
<tr>
<th>Amount</th>
<th>Function</th>
</tr>
</thead>
</table>
| Chromium | 10-15 mcg
Stimulates FFA and cholesterol synthesis; breakdown insulin |
| Copper | 0.3-0.5 mg
Helps form RBC; vessel, nerve, bone health |
| Manganese | 60-100 mcg
Bone formation, thyroid function, connective tissue, sex hormone, calcium absorption, CHO and fat metabolism |
| Selenium | 20-60 mcg
Stimulates antioxidant enzyme production, immunologic (vaccine) protection |
| Zinc | 2.5-5 mg
Cofactor in immune response, factor in cell division, growth, wound healing, breakdown of CHO |

- Antioxidant vitamins and trace elements *(especially selenium)* should be provided to all critically ill patients (SSCM/JPEN Grade B)
 - Vitamins provided through 10 ml Infuvite (adult MVI)
 - Trace elements provided through 1 ml Trace Elements-5

Summary

• EN has not been proven superior to PN
 ▫ Associated with fewer infectious complications
 ▫ Recommended over PN
• Nutrition should be initiated as soon as possible
 ▫ Evidence supporting trophic (non-goal) formulations for the 1st seven days of ICU stay if goal nutrition not tolerated
• PN supplementation to EN is not supported in the evidence
 ▫ Data lacking in severely malnourished patients
• Immunonutrition may have benefits in small trials, but have not been shown to effect mortality in large RCT.
Update in Nutrition Literature

Jessie Winter, PharmD, BCPS
Clinical Pharmacy Specialist
Critical Care/Emergency Medicine
UC Health - University of Cincinnati Medical Center