What You Need to Know: Blood Factors for Hemophilia

Mandy C. Leonard, Pharm.D., BCPS
System Director, Drug Use Policy and Formulary Management
Cleveland Clinic
April 21, 2016

The speaker has no actual or potential conflict of interest in relation to this presentation
Objectives

• Review different types of hemophilia
• Describe blood factors used in the management of hemophilia
• List formulary considerations for blood factors for hemophilia
• Review procurement, billing, and financial impact of blood factors for hemophilia
Definitions

- Hemophilia - inherited bleeding disorders
 - Hemophilia A
 - X-linked recessive disorder (factor VIII)
 - Hemophilia B (factor IX)
 - X-linked recessive disorder
 - von Willebrand disease (VWD)
 - Inherited abnormality in von Willebrand factor (VWF)
 - Acquired factor deficiencies (inhibitors)
Clotting Cascade

Contact activation (intrinsic) pathway

Tissue factor (extrinsic) pathway

Prothrombin (II)

Fibrinogen (I)

Cross-linked fibrin clot

Common pathway

Blood Factors for Hemophilia
Hemophilia A

- Defective synthesis of factor VIII
 - Mutation on long-arm of X chromosome
 - Absent or reduced circulating levels of factor VIII
 - Ultimately leading to decreased thrombin generation

- Discovered as early as 2nd century and in the 19th century
 sex-linked inheritance patterns documented

- Incidence 1 in every 5,000 to 7,000 live male births
 - Severe hemophilia usually diagnosed in first 1 to 1.5 years of life

- Hemophilia A in females is extremely rare
All daughters of a hemophilic male are carriers of hemophilia, whereas all sons are normal

<table>
<thead>
<tr>
<th>Normal Female XX</th>
<th>Hemophilic Male X^hY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(XX^h) (Carrier Female)</td>
</tr>
<tr>
<td></td>
<td>(XX^h) (Carrier Female)</td>
</tr>
<tr>
<td>Carrier Female</td>
<td>Normal Male</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>X^hX</td>
<td>XX^h</td>
</tr>
<tr>
<td></td>
<td>(Carrier Female)</td>
</tr>
<tr>
<td></td>
<td>XX</td>
</tr>
<tr>
<td></td>
<td>(Normal Female)</td>
</tr>
</tbody>
</table>

Daughters of carriers have a 50% chance of being a carrier, whereas sons of carriers have a 50% chance of having hemophilia; prenatal screening.

Note: In many cases, there is no family history of hemophilia; at least 30% of cases are due to spontaneous (de novo) mutations.

Clinical Features of Hemophilia A

- Excessive bleeding into various tissues of the body, including soft tissue hematomas and bleeding in joint spaces *(recurrent hemarthroses; 75% of bleeding episodes)*

<table>
<thead>
<tr>
<th>Classification</th>
<th>Factor VIII Level</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>6-40% of normal (0.06-0.40 U/ml)</td>
<td>Hemorrhage secondary to trauma/surgery
Rare spontaneous hemorrhage</td>
</tr>
<tr>
<td>Moderate</td>
<td>1-5% of normal (0.01-0.05 U/ml)</td>
<td>Hemorrhage secondary to trauma/surgery
Occasional spontaneous hemorrhage</td>
</tr>
<tr>
<td>Severe</td>
<td>≤1% of normal (≤ 0.01 U/ml)</td>
<td>Spontaneous hemorrhage from early infancy
Frequent spontaneous hemarthroses; other hemorrhages; factor replacement</td>
</tr>
</tbody>
</table>

Hemarthroses - Knee
Laboratory Features of Hemophilia A

- Prolonged activated partial thromboplastin time (aPTT)
 - aPTT corrects when hemophilic plasma is mixed with an equal volume of normal plasma

- Normal prothrombin time (PT) and thrombin clotting time

- Factor VIII activity
 - One-stage clotting assay based on aPTT

- Differentiated from VWD
 - Carrier of factor VIII
 - Half-life of factor VIII shortened
Management of Hemophilia A

• Avoid aspirin, NSAIDs, and other medications that interfere with platelet aggregation; intramuscular injections

• Mild-to-moderate: desmopressin (DDAVP)
 – 0.3 mcg/kg IV/SC (factor VIII levels increase 2- to 3-fold)
 – 150 to 300 mcg intranasal spray
 – Tachyphylaxis

• Fresh-frozen plasma; cryoprecipitate

• Factor VIII replacement therapy (intravenous)
 – Prophylaxis
 – Home therapy
 – Treatment

Blood Factors for Hemophilia A - Inherited Human *Plasma-Derived* Factor VIII Concentrates

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Origin</th>
<th>Viral Inactivation</th>
<th>Suggested Wholesale Price (SWP) per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemofil M</td>
<td>Baxter/Baxalta</td>
<td>Plasma</td>
<td>Solvent-detergent</td>
<td>$1.60</td>
</tr>
<tr>
<td>Monoclate-P</td>
<td>CSL Behring</td>
<td>Plasma</td>
<td>Pasteurization</td>
<td>$1.30</td>
</tr>
</tbody>
</table>

- These are designated as ultrapure products
- Monoclonal antibody affinity-purified plasma-derived factor concentrates
- Improved viral-depleting process and donor screening practices have reduced risk for transmission of HIV and hepatitis B and C; however, recombinant products are recommended.

www.hemophilia.org [Accessed March 21, 2016]
Blood Factors for Hemophilia A- Inherited

Recombinant Factor VIII Concentrates

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Origin</th>
<th>Viral Inactivation</th>
<th>SWP per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advate</td>
<td>Baxter/Baxalta</td>
<td>3rd generation; CHO</td>
<td>Solvent-detergent</td>
<td>$1.82</td>
</tr>
<tr>
<td>Helixate FS</td>
<td>Bayer (CSL Behring)</td>
<td>BHK</td>
<td>Solvent-detergent</td>
<td>$1.76</td>
</tr>
<tr>
<td>Kogenate FS</td>
<td>Bayer</td>
<td>2nd generation; BHK</td>
<td>Solvent-detergent</td>
<td>$1.75</td>
</tr>
<tr>
<td>Recombinate</td>
<td>Baxter/Baxalta</td>
<td>1st generation (albumin); CHO</td>
<td>Solvent-detergent</td>
<td>$1.82</td>
</tr>
<tr>
<td>Xyntha</td>
<td>Pfizer</td>
<td>3rd generation; CHO</td>
<td>Solvent-detergent</td>
<td>$1.82</td>
</tr>
<tr>
<td>Kovaltry</td>
<td>Bayer</td>
<td>3rd generation; BHK</td>
<td>Solvent-detergent; nanometer filtration</td>
<td>$2.04</td>
</tr>
<tr>
<td>Eloctate</td>
<td>Biogen</td>
<td>EHK</td>
<td>Prolonged half-life</td>
<td>$2.38</td>
</tr>
</tbody>
</table>

CHO=Chinese hamster ovarian cells; BHK= baby hamster kidney cells; EHK=human embryonic kidney cells

www.hemophilia.org [Accessed March 21, 2016]

ASD Healthcare
Dose of Factor VIII Replacement Therapy

- 1 unit factor VIII per ml of plasma = 100% normal
 - 1 unit factor VIII/kg raises circulating factor VIII level by ~0.02 unit/ml or 2 units/dL

- Desired level of factor VIII
 - Prophylaxis versus treatment

- Dose required to raise level dependent on patient’s plasma volume
 - 5% body weight (kg)
 - Plasma volume 70 kg patient = 3500 ml
 - Dose of FVIII (IU) = Weight (kg) x (desired % increase) x 0.5

- Achieve normal factor VIII levels of 1 unit/ml (100%) =
 - Loading dose (for 70 kg patient): 3500 factor VIII units
 - Half-life = 8 to 12 hours
 - Maintenance dose: 1750 units every 12 hours
Examples of Doses of Factor VIII Replacement Therapy for Treatment of Hemorrhage

<table>
<thead>
<tr>
<th>Site</th>
<th>Desired Factor VIII Level (% of normal)</th>
<th>Factor VIII (Unit/kg BW)</th>
<th>Frequency (hours) Adjusted per patient</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemarthroses</td>
<td>30-50</td>
<td>25</td>
<td>12-24</td>
<td>1-2</td>
</tr>
<tr>
<td>GI tract</td>
<td>50-100</td>
<td>50</td>
<td>12</td>
<td>7-10</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>30-50</td>
<td>25</td>
<td>12</td>
<td>Until resolved</td>
</tr>
<tr>
<td>Hematuria</td>
<td>30-100</td>
<td>25-50</td>
<td>12</td>
<td>Until resolved</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>50-100</td>
<td>50</td>
<td>12</td>
<td>7-10</td>
</tr>
</tbody>
</table>

Note: May be administered as bolus injections or as continuous infusions (150 to 300 units per hour)

Patient Case

- Patient with hemophilia A presents with epistaxis
- Increase factor VIII level by 30%
 - From 0 to 30%, or 10 to 40%
- Patient weighs 50 kg
- Recommended dose of factor VIII replacement therapy is 750 IU
 - $50 \text{ kg} \times 30 \text{ (desired \% increase)} \times 0.5$
- Administered every 12 hours (adjust as needed)
Replacement of Factor VIII for Surgical Procedures

- Emergent versus elective surgery
- Factor VIII raised to normal levels before surgery and maintained for 7 to 10 days or until healing complete
- Continuous infusion, or bolus injections (every 8-12 hours)
- Factor VIII levels monitored
- Bone/joint surgery- prolonged factor VIII replacement
Hemophilia A (Inherited) and Inhibitors to Factors VIII

• Main complication of factor VIII replacement therapy is development of specific inhibitor antibodies that neutralize factor VIII

• Prevalence: 3 to 26%

• High-risk:
 – Genetic mutations (family history of inhibitors)
 – Ethnicity (African Americans>Hispans>Caucasians)
 – Severe hemophiliacs treated at an early age

• aPTT of a 1:1 mixture of plasma with inhibitor and normal plasma is significantly prolonged after incubations at 37°C for 1 to 2 hours
 – Bethesda assay/Nijmegen assay

Lollar P. J Thromb Haemost. 2004;2;1082.
Hemophilia A (Inherited) and Inhibitors to Factors VIII

<table>
<thead>
<tr>
<th>Type of Responder</th>
<th>Initial Titer</th>
<th>Minor Hemorrhage</th>
<th>Major Hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td><5 BU</td>
<td>Factor VIIa; FEIBA</td>
<td>Factor VIII; Factor VIIa, FEIBA</td>
</tr>
<tr>
<td>High</td>
<td>>5 BU</td>
<td>Factor VIIa; FEIBA</td>
<td>Factor VIIa; FEIBA</td>
</tr>
<tr>
<td>Low</td>
<td><5 BU</td>
<td>Factor VIIa; FEIBA</td>
<td>High-dose Factor VIII (10,000 to 15,000 units, then 1000 units/hour)</td>
</tr>
</tbody>
</table>

BU = Bethesda units

Clotting Cascade

Contact activation (intrinsic) pathway

Tissue factor (extrinsic) pathway

Trauma

TFPI

VIIa

VII

VIII

VIIIa

IXa

VIIa

VII

Antithrombin

Prothrombin (II)

Fibrinogen

Fibrin

XII

XIa

IX

V

Va

Xa

Thrombin (IIa)

Common pathway

Cross-linked fibrin clot

XIIIa

XIII

Blood Factors for Hemophilia
Hemophilia A (Inherited) and Inhibitors to Factors VIII

- **FEIBA (Baxter/Baxalta)- human plasma-derived prothrombin complex concentrate (PCC)**
 - Contains factors II, VIIa, IX, and X
 - Able to bypass an inhibitor to factor VIII or IX
 - 50 to 100 units/kg every 8 to 12 hours (patient dependent)
 - SWP: $2.59 per unit

- **NovoSeven RT (Novo Nordisk)- recombinant factor VIIa concentrate**
 - Contains *activated* factor VIIa
 - Activates factor X
 - Associates with factor Va and converts prothrombin to thrombin
 - 90 to 120 mcg/kg every 2 to 3 hours
 - SWP: $2.40 per mcg
Hemophilia A- Acquired

• Rare autoimmune disease, not inherited
 – Approximately 500 cases per year in United States
 – Median age for diagnosis: 74 years
 – Delayed diagnosis

• Immunoglobulin G (IgG) antibodies bind to domains on factor VIII (neutralizes function)

• Manifests as spontaneous bleeding and can be life-threatening
 – Skin, muscles (45%), soft tissue, and mucous membranes, gastrointestinal/intra-abdominal bleeds (23%)

• Unlike hemophilia A (mixing test), if patient has autoantibody inhibitor to factor VIII, then the factor VIII in normal plasma will also be inhibited and the aPTT will not normalize

Blood Factors for Hemophilia A- Acquired

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NovoSeven RT</td>
<td>NovoNordisk</td>
<td>Also used in hemophilia A inherited with inhibitors</td>
</tr>
<tr>
<td>FEIBA</td>
<td>Baxter/Baxalta</td>
<td>Also used in hemophilia A inherited with inhibitors</td>
</tr>
<tr>
<td>Obizur (recombinant porcine factor VIII)</td>
<td>Baxter/Baxalta</td>
<td>Hemophilia A- acquired only; Human factor VIII inhibitors do not cross react with porcine factor VIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial dose: 200 units/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjusted dose per factor VIII level (50-100 units/kg) and administer every 4 to 12 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP per unit: $6.19</td>
</tr>
</tbody>
</table>

Obizur [prescribing information]. Westlake Village, CA: Baxter Healthcare Corporation; October 2014. ASD Healthcare
Hemophilia B

• Defective synthesis of factor IX
 – Mutation on long-arm of X chromosome
 – Absent or reduced circulating levels of factor IX
 – Ultimately leading to decreased thrombin generation

• Christmas disease
 – Named for first patient diagnosed in 1952

• Incidence 1 in every 25,000 to 30,000 live male births

• Genetic inheritance is similar to hemophilia A
 – Carriers are typically asymptomatic
 – Prenatal screening

Clinical Features of Hemophilia B

• *Clinically indistinguishable* from Hemophilia A
• Fewer and less severe complications
• Hemarthroses

<table>
<thead>
<tr>
<th>Classification</th>
<th>Factor IX Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>5 to 40% of normal</td>
</tr>
<tr>
<td>Moderate</td>
<td>1 to 5% of normal</td>
</tr>
<tr>
<td>Severe</td>
<td><1% of normal</td>
</tr>
</tbody>
</table>

Factor IX inhibitors are much less common; only ~3% of severe patients develop inhibitors
Laboratory Features of Hemophilia B

• Similar to hemophilia A
• Prolonged activated partial thromboplastin time (aPTT)
 – aPTT corrects when hemophilic plasma is mixed with an equal volume of normal plasma
• Normal prothrombin time (PT)
• Factor IX activity
 – One-stage clotting assay based on aPTT
• Must be distinguished from hemophilia A

Management of Hemophilia B

- Similar to Hemophilia A
 - Avoid select medications; intramuscular injections
- Factor IX replacement therapy
Blood Factors for Hemophilia B
Human *Plasma-Derived Factor IX Concentrate*

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Classification</th>
<th>Viral Inactivation</th>
<th>SWP per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlphaNine SD</td>
<td>Grifols</td>
<td>High-purity</td>
<td>Solvent-detergent; virus filtered</td>
<td>$1.58</td>
</tr>
<tr>
<td>Mononine</td>
<td>CSL Behring</td>
<td>High-purity</td>
<td>Ultrafiltration; chemical</td>
<td>$1.52</td>
</tr>
</tbody>
</table>

Improved viral-depleting process and donor screening practices have reduced risk for transmission of HIV and hepatitis B and C; however, recombinant products are recommended.
Blood Factors for Hemophilia B
Recombinant Factor IX Concentrate

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Origin</th>
<th>Viral Inactivation</th>
<th>SWP per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeneFIX</td>
<td>Pfizer</td>
<td>CHO</td>
<td>Solvent-detergent</td>
<td>$1.64</td>
</tr>
<tr>
<td>Ixinity</td>
<td>Emergent Biosolutions</td>
<td>CHO</td>
<td>Solvent-detergent; nanofiltration</td>
<td>$1.78</td>
</tr>
<tr>
<td>Rixubis</td>
<td>Baxter/Baxalta</td>
<td>CHO</td>
<td>Nanofiltration</td>
<td>$1.75</td>
</tr>
<tr>
<td>Alprolix</td>
<td>Biogen</td>
<td>EHK</td>
<td>Chromatography; Prolonged half life</td>
<td>$3.42</td>
</tr>
</tbody>
</table>

CHO=Chinese hamster ovarian cells; EHK=human embryonic kidney cells

www.hemophilia.org [Accessed March 21, 2016]
ASD Healthcare
Dose of Factor IX Replacement Therapy

• Desired level of factor IX

• Achieve 100% of normal = Dose 100 factor IX units/kg as bolus, then 50 factor IX units/kg every 12 to 18 hours
 – 60 kg patient = 6000 units (100%), then 3000 units
 – 250 units per hour as continuous infusion

• Monitor factor IX levels

• 1 unit factor IX/kg raises circulating factor IX level by 1% of normal or ~0.01 unit/ml

• Dose of factor IX (IU) = weight (kg) x (desired % increase) x F
 – F = reciprocal of observed recovery

Replacement of Factor IX for Surgery

• Emergent versus elective surgery
 – Desired factor IX level (%)
 – Minor (20-30%); Moderate (25-50%); Major (50-100%)
• Factor IX raised to normal levels before surgery and maintained for 7 to 10 days or until healing complete
• Continuous infusion, or bolus injections (every 12 to 24 hours)
• Factor IX levels monitored
• Bone/joint surgery- prolonged factor IX replacement

Hemophilia B and Inhibitors to Factor IX

• ~3% percent of severe hemophilia B
• <5 BU use large doses of factor IX replacement therapy
• >5 BU use same management as factor VIII inhibitor
 – Do not use Obizur
von Willebrand Disease

- von Willebrand factor (VWF) is a central component of hemostasis
 - Adhesive link between platelets and injured blood vessel wall
 - Carrier for factor VIII

- Most common inherited bleeding disorder

- Prevalence: 1 in every 1000

- Males and females

- Described by Eric von Willebrand in 1926
 - Bleeding disorder in 42/66 members of a family from Aland Islands (Finland)
 - Affected both males and females

Classification of von Willebrand Disease

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Genetics</th>
<th>VWF levels</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>1-30:1000</td>
<td>Autosomal dominant</td>
<td>Low (structure and function normal)</td>
<td>Most common variant</td>
</tr>
<tr>
<td>Type 2A</td>
<td>10-15%</td>
<td></td>
<td>Structure and function abnormal</td>
<td>Most common Type 2</td>
</tr>
<tr>
<td>Type 2B</td>
<td><5%</td>
<td></td>
<td></td>
<td>Thrombocytopenia</td>
</tr>
<tr>
<td>Type 2M</td>
<td>Rare (case reports)</td>
<td></td>
<td></td>
<td>Significant bleeding</td>
</tr>
<tr>
<td>Type 2N</td>
<td>Uncommon</td>
<td></td>
<td></td>
<td>Decreased binding</td>
</tr>
<tr>
<td>Type 3</td>
<td>1-5:1,000,000</td>
<td>Autosomal recessive</td>
<td>Low; undetectable</td>
<td>Most severe</td>
</tr>
</tbody>
</table>

Note: Types 1 and 3 are quantitative deficiencies and Type 2 is qualitative deficiency

Clinical Features of von Willebrand Disease

• Mucocutaneous bleeding (type 1)
 – Epistaxis (60%), bruising/hematomas (40%), menorrhagia (35%), gingival bleeding (35%), GI bleeding (10%)
 – After a trauma event (e.g., dental extraction, wound, post-partum, post-operatively)

• Hemarthroses (type 3)
Laboratory Features of von Willebrand Disease

• FVIII:C
 – Coagulant property of factor VIII protein (i.e., FVIII)

• VWF:Ag
 – Antigenic determinant(s) on factor VIII measured by immunoassays

• VWF:Rco
 – Property of VWF that supports ristocetin-induced agglutination of washed or fixed normal platelets
 – Most sensitive and specific single test for VWD

• VWF: <30 IU/dL (threshold)
Dose of VWD Factor Replacement Therapy

- Dosing and timing is largely empiric
- Goal to elevate the FVIII:C and VWF:RCo until bleeding stops and healing is complete
 - Initial replacement should be >100 IU/dL and maintenance >50 IU/dL for 7 to 14 days (major trauma/surgery) and 30 to 50 IU/dL (minor trauma/surgery) for 3 to 5 days; 50 IU/dL for 3 days (post-partum)
- VWF:RCo 50-100%
 - 20-40 IU/kg ristocetin cofactor activity raises plasma concentration by 50-100% or 0.7 units/ml
 - Loading Dose: 40-80 IU/kg
 - Maintenance dose is lower and administered every 8 to 12 hours

• Laboratory monitoring
Replacement of VWF for Surgery

• Hematologist/Surgeon
• Evaluate potential for bleeding
• DDAVP versus VWF replacement
Blood Factors for von Willebrand Disease
Factor VIII and von Willebrand Factor

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Use</th>
<th>SWP per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphanate</td>
<td>Grifols</td>
<td>Hemophilia A and vWD</td>
<td>$1.38</td>
</tr>
<tr>
<td>Humate-P</td>
<td>CSL Behring</td>
<td>Hemophilia A and vWD</td>
<td>$1.40</td>
</tr>
<tr>
<td>Wilate</td>
<td>Octapharma</td>
<td>vWD only</td>
<td>$1.56</td>
</tr>
</tbody>
</table>

Note: Patients with vWD type 1 and some patients with type 2 can be managed with desmopressin (~20-25% do not respond adequately to desmopressin)
Formulary Considerations: Blood Factors

• Hemophilia A
 – Recombinant product
 – Product for patient with inhibitors
 – Product for acquired hemophilia A

• Hemophilia B
 – Recombinant product
 – Product for patient with inhibitors

• VWD
 – VWF product
Blood Factors – Cost (Suggested Wholesale Price)

• Recombinate: $1.82 per IU
 – 1750 IU every 12 hours= $6,370 per day

• BeneFIX: $1.64 per IU
 – 2000 IU every 12 hours= $6,560 per day

• FEIBA: $2.59 per IU
 – 3500 IU every 12 hours= $18,130 per day

• NovoSeven RT: $2.40 per mcg
 – 6,300 mcg (6.3 mg) x 1 dose= $15,120
 – Every 2 to 3 hour dosing: ~$120,000

• Obizur: $6.19 per IU
 – Initial dose: $86,660, and $43,330 every 12 hours

• Humate-P: $1.40 per IU (VWF)
 – 3500 IU every 12 hours= $9,800 per day
Procurement of Blood Factors for Hemophilia

• Pharmacy versus Blood Bank

• Consignment versus on-demand ordering
 – Blood factor wholesaler

• Storage
 – Refrigerator space; some data for storage outside of refrigerator (dependent on product)

• Quantity sufficient to treat one hemophiliac patient urgently (emergent) for 48 to 72 hours
 – 20,000 units
 – Each lot varies per number of unit
 – Consult box/vial for exact potency

• Planned surgery/procedures
Blood Factor Stewardship

• Hematologists and pharmacists and nurses

• Process
 – Emergency versus elective admission
 – Notification of patient admission
 – Estimated total factor needed
 – Evaluate inventory (including units – dose rounding)
 – Order additional factor if needed

• Communicate
 – Prior to preparing and dispensing each dose
 – Extended stability

• Follow-up
Billing and Reimbursement for Blood Factors

• Pass-through status (inpatient)

• Document, document, document
 – Blood factor
 – Weight of patient (kg)
 – Dose
 – Frequency
 – Ordered, dispensed, administered via medication administration record

• Returns/Credits

• Patient Assistance Programs
Hemophilia Treatment Center (HTC)

• Specialized health care centers that bring together a team of doctors, nurses, and other health professionals experienced in treating people with hemophilia
 – Pathologists, Hematologists, Orthopedists, Physical Therapists, Genetic Counselors

• A CDC study of 3,000 people with hemophilia showed that those who used an HTC were 40% less likely to die of a hemophilia-related complication compared to those who did not receive care at a treatment center.

• Similarly, people who used a treatment center were 40% less likely to be hospitalized for bleeding complications

www.hemophilia.org [Accessed March 21, 2016]
Where are the HTCs located in Ohio?

• Children’s Hospital Medical Center of Akron
• Cincinnati Children’s Hospital Medical Center
• Dayton Children’s Hospital
• Nationwide Children’s Hospital (Columbus)
• Northwest Ohio Hemophilia Treatment Center (Promedica/Toledo Children’s Hospital)
• Ohio State University Medical Center (Columbus)
• University Hospital Health System (Cleveland)
• University of Cincinnati Medical Center
Summary

• There are different types of hemophilia, including hemophilia A and B as well as von Willebrand Disease

• Based on the type of hemophilia, there are specific management strategies including replacement of deficient or defective factor and replacement factors to bypass inhibitors

• There are several formulary considerations for blood factors for hemophilia including patient population, designation as a hemophilia treatment center, inventory/storage, and cost

• It is important to be prepared to manage hemophilia patients especially for emergent situations