Optimal Management of Hospitalized Patients with Hyponatremia: Case Scenarios

Jodie L. Pepin, Pharm.D.
Director of Pharmacy
Seton Medical Center Williamson
Seton Healthcare Family
Clinical Assistant Professor of Health Outcomes and Pharmacy Practice
The University of Texas College of Pharmacy
Austin, Texas
Learning Objectives

After attending this activity, you should be able to

• Describe the impact of hyponatremia on morbidity, mortality, and use of health care resources in hospitalized patients.

• Recommend a strategy for monitoring and managing a patient’s hyponatremia based on volume status, clinical presentation, and co-morbidities.
Hyponatremia Definition

- Commonly defined as serum sodium concentration <136 mEq/L, but cut-off values often vary by laboratory
- Degree of severity is associated with serum sodium concentration

<table>
<thead>
<tr>
<th>Serum Sodium Concentration (mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
</tr>
<tr>
<td>Moderate</td>
</tr>
<tr>
<td>Severe</td>
</tr>
<tr>
<td>131-135</td>
</tr>
<tr>
<td>120-130</td>
</tr>
<tr>
<td><120</td>
</tr>
</tbody>
</table>

Incidence of Hyponatremia

• Most common electrolyte disorder
 – 6-15% of hospitalized patients at admission and an additional 5% during the hospital stay
• 25% of patients in ICU are hyponatremic
• If not treated appropriately, can lead to significant morbidity, mortality, and costs
• Insufficient data to determine if hyponatremia is a “marker” or “mediator” of adverse outcomes

ICU = intensive care unit
Common Symptoms Associated with Severity of Hyponatremia

- **Serum [Na⁺] 130–135 mEq/L**
 - Asymptomatic
 - Headache
 - Nausea
 - Vomiting
 - Fatigue
 - Confusion
 - Anorexia
 - Muscle cramps
 - Depressed reflexes

- **Serum [Na⁺] 120–130 mEq/L**
 - Malaise
 - Unsteadiness
 - Headache
 - Nausea
 - Vomiting
 - Fatigue
 - Confusion
 - Anorexia
 - Muscle cramps

- **Serum [Na⁺] <120 mEq/L**
 - Headache
 - Restlessness
 - Lethargy
 - Seizures
 - Brainstem herniation
 - Respiratory arrest
 - Death

Ghali JK. *Cardiology.* 2008; 111:147-57.
How is Hyponatremia Classified?

Dilutional Hyponatremia
Total body water INCREASED

Hypervolemic
(edema)
Total body sodium INCREASED
Heart failure
Cirrhosis
Nephrotic syndrome

Euvolemic
(no edema)
Total body sodium UNCHANGED
SIADH
Hypothyroidism
Secondary adrenal insufficiency

Depletional Hyponatremia
Total body water DECREASED

Hypovolemic
Sodium lost
Total body sodium DECREASED
Diarrhea
Vomiting
Burns
Trauma
Pancreatitis
Diuretic excess
Renal salt wasting
Primary adrenal insufficiency

SIADH = syndrome of inappropriate antidiuretic hormone

Various Causes of SIADH

CNS Disorders
- Acute psychosis
- Stroke
- Hemorrhage
- Trauma
- Inflammatory and demyelinating diseases
- Mass lesions

Medications
- HIV infection
- Idiopathic
- Pain
- Postoperative state
- Prolonged exercise
- Senile atrophy
- Severe nausea

Pulmonary
- Acute respiratory failure
- Infection
- Positive pressure ventilation

Miscellaneous
- Extrathoracic
- Mediastinal
- Pulmonary

Tumors

Vasopressin Concentrations Inappropriately Elevated in Patients with SIADH

- Caused by excessive levels of vasopressin as a result of disease, drug-induced pituitary release of arginine vasopressin (AVP)
- AVP secretion not suppressed appropriately when plasma osmolality falls below the osmotic threshold
- Inability to suppress AVP secretion results in
 - Impaired renal water excretion
 - Increased total body water
 - Hyponatremia

Outcomes Associated with Declining Sodium Concentrations

• Defined – serum sodium concentration <138 mEq/L on admission and further decline of at least 2 mEq/L over first 48 hours

• This level of decline occurs in 6% of community-acquired hyponatremia patients

• OR for inpatient mortality
 – 2.30 (1.75-3.02) with decline
 – 1.46 (1.31-1.64) with no decline

• OR 1.40 (1.32-1.49) for prolonged length of stay (LOS)

• Sets stage for impact of therapies

OR = odds ratio

Preoperative Hyponatremia in CABG Patients and Outcomes

- Of 4370 patients, 21% had hyponatremia
- Were sicker and had more co-morbid conditions and organ dysfunction
- Adjusted outcomes for patients with hyponatremia
 - 31% higher overall mortality (early and late)
 - 26% increase in length of stay
 - 64% increase in postoperative complications
- Suggests need for optimal preoperative correction of hyponatremia in CABG patients

CABG = coronary artery bypass graft
Sodium Fluctuations and Outcomes in ICU Patients

• Evaluation of dysnatremia in 11,000 ICU patients from 2004 to 2009 in one ICU
• Dysnatremia either at admission or during ICU stay is associated with higher mortality
• Median fluctuation of sodium in ICU 4 mEq/L (IQR 2-7)
• Sodium fluctuation > 6 mEq/L in normonatremia
 – Higher risk of hospital death (OR 1.5)
 – Possible changes in osmolality in serum and brain
 – First study to implicate serum sodium fluctuations

IQR = interquartile range

Outcomes of Patients with Hyponatremia*

<table>
<thead>
<tr>
<th>Variable**</th>
<th>Hyponatremia ((n = 10,900))</th>
<th>No Hyponatremia ((n = 187,400))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital mortality (%)</td>
<td>5.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Ventilated (%)</td>
<td>5.0</td>
<td>2.8</td>
</tr>
<tr>
<td>ICU (%)</td>
<td>17.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Median LOS (days)</td>
<td>8.6</td>
<td>7.2</td>
</tr>
<tr>
<td>Hospital costs ($)</td>
<td>16,500</td>
<td>13,560</td>
</tr>
</tbody>
</table>

*From a database of 200,000 patients.
**All variables significantly different between groups at \(p < 0.001 \).

Adjusted incremental hospital cost = $2289

Cost of Hyponatremia in Patients with Heart Failure

- Association of hyponatremia and adverse outcomes in heart failure well known
- Study of 51,000 patients with heart failure with and without hyponatremia to assess costs
- After adjusting, hyponatremic patients had:
 - 21.5% higher hospital LOS
 - 25.6% higher hospital costs
 - 24.6% higher ICU costs
 - Higher all-cause 30-day readmission (OR 5.1)

Key Points

• Hyponatremia is common in hospitalized patients
 – Has complex pathophysiology
 – Associated with poor clinical outcomes
 – Have consistent documentation of high economic burden

• Sets stage for appropriate identification and treatment
Patient Case: CD

CD is a 76-year-old woman presenting to ED after hitting her head as a result of a fall. She complains of hip pain, nausea, and dizziness and relates that she has been “unsteady on her feet” over the past few days.

PMH: HTN, hyperlipidemia, DJD (hip and knees), depression

Physical exam: Laceration to right brow, right hip pain, normal skin turgor, and slightly dry oral mucosa

Vitals: temp 98.2°F, BP 150/80 mm Hg, HR 88 bpm

Neuro: Slightly confused; no focal deficits

Head CT: negative

X-ray hip: Evidence of hip fracture

Laboratory data: Sodium 117 mEq/L, potassium 3.9 mEq/L, creatinine 0.9 mg/dL, BUN 10 mg/dL, glucose 102 mg/dL
CD’s Home Medications

- Lisinopril 40 mg orally daily
- Metoprolol 25 mg orally twice daily
- Aspirin 81 mg orally daily
- Simvastatin 20 mg orally daily
- Citalopram 40 mg orally daily
- Acetaminophen 325 mg orally every 4 hours as needed for pain
Additional Laboratory Results for CD

• Serum osmolality = 240 mOsm/kg
• Urine osmolality = 211 mOsm/kg
• Urine sodium = 45 mmol/L
• TSH = within normal limits
• Cortisol = within normal limits

– Question:
 • What category of hyponatremia is CD exhibiting?
Hyponatremia: Classification

Dilutional Hyponatremia
Total body water INCREASED

Hypervolemic
(edema)
Total body sodium INCREASED
Heart failure
Cirrhosis
Nephrotic syndrome

Euvolemic
(no edema)
Total body sodium UNCHANGED
SIADH
Hypothyroidism
Secondary adrenal insufficiency

Depletional Hyponatremia
Total body water DECREASED

Hypovolemic
Sodium lost
Total body sodium DECREASED
Diarrhea
Pancreatitis
Vomiting
Diuretic excess
Burns
Renal salt wasting
Trauma
Primary adrenal insufficiency

SIADH = syndrome of inappropriate antidiuretic hormone

Features of SIADH

• Hyponatremia
• Urine osmolality > 100 mOsm/kg
• Exclusion of hypovolemic
 – Urine sodium > 20-30 mmol/L
 – No hypotension
 – No edema
• Absence of
 – Adrenal insufficiency
 – Hypothyroidism
Which of CD’s home medications is most likely to contribute to hyponatremia?

a. Acetaminophen
b. Citalopram
c. Metoprolol
d. Lisinopril
e. Simvastatin
Mechanisms of Drug-induced Hyponatremia

↑ Hypothalamic production of vasopressin
- Antidepressants (TCAs, SSRIs, MAOIs)
- Antipsychotics (phenothiazines, haloperidol)
- Antiepileptics (carbamazepine, valproic acid)
- Antineoplastic agents
- Opiates

↑ Vasopressin effect at renal tubule level
- Antidiabetic drugs (chlorpropamide, tolbutamide)
- Antiepileptics (carbamazepine, lamotrigine)
- IV cyclophosphamide
- Nonsteroidal anti-inflammatory drugs

↑ Vasopressin effect at renal tubule level

Alter sodium and water homeostasis
- Thiazide diuretics and indapamide
- Amiloride
- Loop diuretics

TCAs = tricyclic antidepressants
SSRIs = selective serotonin reuptake inhibitors
MAOIs = monoamine oxidase inhibitors

SSRI-induced Hyponatremia

• Incidence 0.5%-32%

• Occurs most often during 1st few weeks
 – Normal serum sodium usually achieved within 2 weeks of discontinuing drug

• Risk factors
 – Older age
 – Concomitant diuretic therapy
 – Low body weight
 – Baseline serum sodium concentration <133 mEq/L

Falls: Common Symptom of Chronic “Asymptomatic” Hyponatremia

Patients with chronic “asymptomatic” hyponatremia admitted for falls significantly more frequently than patients with normal serum sodium.

Gait in Patients Before and After Correcting Hyponatremia

Serum $[\text{Na}^+] = 130 \text{ mEq/L}$

Serum $[\text{Na}^+] = 139 \text{ mEq/L}$

Serum $[\text{Na}^+] = 124 \text{ mEq/L}$

Serum $[\text{Na}^+] = 135 \text{ mEq/L}$

Considerations for Treating CD’s Hyponatremia

- Chronicity of hyponatremia
- Presence of significant neurologic signs
- Appropriate rate of correction
- Optimal method of raising the plasma sodium concentration

Acute versus Chronic Hyponatremia

<table>
<thead>
<tr>
<th>Acute (≤ 48 hr)</th>
<th>Chronic (> 48 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>Symptoms</td>
</tr>
<tr>
<td>• Cerebral edema</td>
<td>• Nausea and vomiting</td>
</tr>
<tr>
<td>• Seizures</td>
<td>• Confusion or personality changes</td>
</tr>
<tr>
<td>• Increased mortality risk</td>
<td>• Neurologic dysfunction</td>
</tr>
<tr>
<td></td>
<td>• Gait disturbances</td>
</tr>
<tr>
<td></td>
<td>• Seizures (with very low serum sodium levels)</td>
</tr>
</tbody>
</table>

Rapid correction reverses cerebral edema without sequelae

Rapid correction may cause brain dehydration and osmotic demyelination syndrome (ODS)

Patient CD: Outcomes

- Pharmacist in ED recommended discontinuation of citalopram.
- Pharmacist reminded physician that it may take up to two weeks to completely clear the citalopram and alternate approach would need to be instituted in the mean time.
- Fluid restriction order was written for 1500 mL/day.
- Hospital course (hip fracture surgery and post-operative care)
 - **Day 1:** Citalopram discontinued and NPO for hip surgery. Post-op fluid restriction order – Na+ = 119 mEq/L
 - **Day 2:** Continued fluid restriction – Na+ = 121 mEq/L
 - **Day 3:** Patient mental status improving – Na+ = 123 mEq/L
 - **Day 4:** Discharge to rehab facility with recommendation to continue monitoring sodium – Na+ on discharge = 125 mEq/L
Key Points

- When treating hyponatremia consider chronicity and severity of neurological symptoms
- Consider contribution of home medications to hyponatremia and fall
- Take into account the elimination half-life of the offending drug
 - Many have long half-lives
 - Estimate duration of drug effect on changes in sodium
 - Recommend other interventions during time of drug elimination
- Consider placing pharmacist on falls awareness team
Patient Case: BB

BB is a 66-year-old, 70-kg man presenting to the ED with increasing shortness of breath, fatigue, and marked edema.

PMH: DM, CKD (stage II), and CHF (EF 30%)

Physical exam: jugular venous distension and rales

Neuro: alert, following commands

CXR: bilateral pleural effusions, retrocardiac opacity

Vitals: temp 100.4°F, BP 100/60 mm Hg, HR 95 bpm

Laboratory data: sodium 124 mEq/L, creatinine 1.5 mg/dL, urine sodium 7 mEq/L, and plasma osmolality 265 mOsm/kg

What type of hyponatremia does BB exhibit?
Hyponatremia: Classification

Dilutional Hyponatremia
- Total body water INCREASED

Hypervolemic (edema)
- Total body sodium INCREASED
 - Heart failure
 - Cirrhosis
 - Nephrotic syndrome

Euvolemic (no edema)
- Total body sodium UNCHANGED
 - SIADH
 - Hypothyroidism
 - Secondary adrenal insufficiency

Depletional Hyponatremia
- Total body water DECREASED

Hypovolemic
- Sodium lost
 - Total body sodium DECREASED
 - Diarrhea
 - Vomiting
 - Diuretic excess
 - Burns
 - Renal salt wasting
 - Trauma
 - Primary adrenal insufficiency

SIADH = syndrome of inappropriate antidiuretic hormone

Patient Case: BB

ED course:

✓ Oxygen saturations began to drop ➔ intubated

BB is transferred to the MICU for further care

Repeat laboratory data: sodium 122 mEq/L
Considerations for Treating BB’s Hyponatremia

- Chronicity of hyponatremia
- Presence of significant neurologic signs
- Appropriate rate of correction
- Optimal method of raising the plasma sodium concentration

What is the best option for correcting BB’s hyponatremia?

a. 0.9% sodium chloride infusion
b. Fluid restriction + furosemide
c. Hypertonic saline infusion + furosemide
d. Conivaptan
e. Tolvaptan
Hyponatremia: Strategies for Correction

NOT Ideal Therapies for BB

• 0.9% sodium chloride infusion
 – BB is already volume overloaded with symptoms

• Hypertonic saline infusion + furosemide
 – Option if BB was severely symptomatic with rapidly falling serum sodium\(^1\)

• Tolvaptan
 – Decreased bioavailability via NGT administration\(^2\)

Fluid Restriction

• 500-900 mL/day
• Can be used in asymptomatic hyponatremic patients or patients with less serious hyponatremia
• Raises serum sodium approximately 1 to 2 mEq/L/day

Goldsmith SR. *Am J Cardiol.* 2005; 95(Suppl):14B-23B.
Implementation of Fluid Restriction

BB’s medication list

Dobutamine 250 mg/250 mL D$_5$W at 10 mcg/kg/min (1000 mL/day)
Furosemide 100 mg/100 mL D$_5$W at 25 mg/hr (600 mL/day)
Chlorothiazide (250 mL D$_5$W / day)
Azithromycin (250 mL D$_5$W / day)
Ceftriaxone (50 mL D$_5$W / day)
Vancomycin (1500 mL D$_5$W / day)
Famotidine (100 mL D$_5$W / day)
Fentanyl IVP prn for pain
Heparin SQ

~4000 mL per day of free water from medications
Implementation of Fluid Restriction

Alterations to BB’s medication list

Dobutamine 250 mg/250 mL D_5W at 10 mcg/kg/min (1000 mL/day)
Dobutamine 1000 mg/250 mL D_5W at 10 mcg/kg/min (250 mL/day)

Furosemide 100 mg/100 mL D_5W at 25 mg/hr (600 mL/day)
Furosemide 500 mg/100 mL D_5W at 25 mg/hr (120 mL/day)

~2000 mL per day of free water from medications
Patient Case: BB

Within 15 minutes after the change in medication concentrations, BB’s condition changes

BP: 40/25 mm Hg (MAP = 30 mm Hg)

HR: 180 beats per minute

EKG: PVCs

Problem: infusion pump was not changed to reflect the 4-fold increase in concentration of dobutamine and therefore delivered 40 mcg/kg/min when the same dose was intended
Pitfalls of Fluid Restriction

- Fluid restriction
 - Pharmacist unaware of a fluid restriction order
 - Often 8-12 IV drugs providing daily volume of 4-8 L
 - Cost implications
 - Time to change drug concentration
 - Increase pharmacy workload and drug waste
 - Potential for errors if pump not re-programmed correctly

- Diuretic therapy
 - Electrolyte and acid-base disturbances
Patient Case: BB

Three days after initiating fluid restriction and diuretics, BB is extubated; however, only minimal reduction in total body volume and frequent PVCs are noted on EKG.

Laboratory data: sodium 127 mEq/L, potassium 2.0 mEq/L, creatinine 2.0 mg/dL, urine sodium 9 mEq/L, and plasma osmolality 270 mOsm/kg

Is there a role for conivaptan or tolvaptan?
Vasopressin Receptor Antagonists

- Induce highly hypotonic urine and aquaresis without substantially affecting electrolyte excretion
- Can lift fluid restriction

<table>
<thead>
<tr>
<th>Agent</th>
<th>Receptor Selectivity</th>
<th>Formulation</th>
<th>Half-life, hr</th>
<th>Urine Volume</th>
<th>Urine Osmolality</th>
<th>FDA Approval Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conivaptan</td>
<td>Mixed (V₁a+V₂)</td>
<td>IV</td>
<td>5</td>
<td>↑</td>
<td>↓</td>
<td>Approved 2004</td>
</tr>
<tr>
<td>Tolvaptan</td>
<td>V₂</td>
<td>Oral</td>
<td>12</td>
<td>↑</td>
<td>↓</td>
<td>Approved 2009</td>
</tr>
</tbody>
</table>

Conivaptan (IV)

- Administer IV via large veins
 - Infusion-site reactions (63–73%), change infusion site every 24 hr
- Available as 20 mg/100 mL premixed in 5% dextrose
- Dosing: 20 mg IV loading dose over 30 min, then 20 mg as continuous infusion over 24 hr
 - Moderate liver impairment: initiate half of normal dose
- Duration of infusion limited to 4 days
- Limited data on IV drug–drug compatibility
- Contraindicated with potent CYP3A4 enzyme inhibitors
 - Examples: ketoconazole, itraconazole, indinavir

Vaprisol (conivaptan hydrochloride) injection prescribing information. 2012 Oct (URL in ref list).
Tolvaptan (Oral)

- Indicated for clinically significant hypervolemic and euvolemic hyponatremia (serum sodium < 125 mEq/L or less marked hyponatremia that is symptomatic and has resisted correction with fluid restriction), including patients with heart failure, cirrhosis, and SIADH
- Available in 15-mg and 30-mg tablets
- Dosing: 15 mg orally once daily
 - May increase at intervals >24 hr to maximum 60 mg once daily
- Limit therapy to 30 days
- Should only be initiated and re-initiated in hospital setting
 - Must review FDA-approved medication guide with every patient
- Contraindicated with potent CYP3A4 enzyme inhibitors
 - Examples: ketoconazole, itraconazole, indinavir

Samsca (tolvaptan) prescribing information. 2013 Apr (URL in ref list).
Safety Warning for Tolvaptan: Prescribing Information Revised

• Serious and potentially fatal liver injury
• Clinical trial, polycystic kidney disease (n = 1400)
 – Significant elevations in liver function tests
 – Reversible following tolvaptan discontinuation
 – Doses of 120 mg/day (higher than in hyponatremia)
• Liver damage not reported in hyponatremia trials
• Precautions
 – Limit use to 30 days
 – Avoid use in patients with underlying liver disease
 – Discontinue if symptoms of liver injury

Samsca (tolvaptan) prescribing information. 2013 Apr (URL in ref list).
Vasopressin Receptor Antagonists

• Some evidence demonstrating impact on morbidity and mortality in heart failure
 – Hyponatremic patients (≤ 135 mEq/L) with a serum sodium improvement on tolvaptan was linked to decrease in 60-day mortality rate\(^1\)
 – Hyponatremic patients (< 130 mEq/L) treated with tolvaptan have a significantly lower combined endpoint of cardiovascular morbidity and mortality\(^2\)

Patient Case: BB

- Tolvaptan initiated at 15 mg orally daily for 4 days
- Over that time there was a decrease in total body water and increase in serum sodium
- Tolvaptan discontinued and discharged home

<table>
<thead>
<tr>
<th></th>
<th>Serum Sodium (mEq/L)</th>
<th>Δ Serum Sodium from Baseline</th>
<th>SCr (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>127</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Day 2</td>
<td>130</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Day 3</td>
<td>131</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>Day 4</td>
<td>132</td>
<td>4</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Key Points

- Hypervolemic hyponatremia is commonly chronic in nature
- Chronic hyponatremia must be corrected slowly
- Consider volume status of patient in hypervolemia and apply treatments that do not exacerbate condition
- Fluid restriction with diuretics may provide modest improvement in hyponatremia
- Vasopressin receptor antagonists are an attractive alternative in patients with heart failure promoting aquareasis
- Consider safety, need, and resources for outpatient continuation of oral vasopressin antagonist therapy
Patient Case: GH

GH is a 34-year-old, 70-kg woman brought to the ED by EMS with new-onset seizures after being found unresponsive on the ground outside a club.

PMH: none

Physical exam: no evidence of fluid overload

Neuro: obtunded

Head CT: negative

Vitals: temp 98.2°F, BP 110/70 mm Hg, HR 80 bpm

Laboratory data: sodium 116 mEq/L, urine sodium 8 mEq/L, and plasma osmolality 266 mOsm/kg
Considerations for Treating GH’s Hyponatremia

• Chronicity of hyponatremia

• Presence of significant neurologic signs

• Appropriate rate of correction

• Optimal method of raising the plasma sodium concentration

What is the best option for correcting GH’s hyponatremia?

a. 0.9% sodium chloride infusion
b. Fluid restriction + furosemide
c. Hypertonic saline infusion
d. Conivaptan
NOT Ideal Therapies for GH

- 0.9% sodium chloride infusion
- Fluid restriction + furosemide
- Conivaptan

GH is experiencing severe symptoms with a rapidly falling serum sodium
Increase Serum Sodium to More Normal Level at Appropriate Rate

Insufficient correction

Too aggressive correction

Cerebral edema

Sodium Level

Osmotic demyelination syndrome*

*Patients with severe malnutrition, alcoholism, or advanced liver disease may be especially susceptible, and slower rates of correction may be advisable

Use of 3% Sodium Chloride in GH

• Equation
 – $\Delta sNa = \left\{ [iNa - sNa] \div (TBW + 1) \right\}$
 – TBW for GH: $0.5 \text{ L/kg} \times 70 \text{ kg} = 35 \text{ L}$
 – $\Delta sNa = \left\{ [513 - 116] \div (35 + 1) \right\} = 11 \text{ mEq/L}$

• 1 liter of 3% sodium chloride will correct GH’s serum sodium by 11 mEq/L

• Administer 3% sodium chloride @ 90 mL/hr for 5 hours

$iNa = \text{infusate sodium}; sNa = \text{serum sodium}$
GH is transferred to the Neuro ICU where she is placed on cEEG monitoring and 3% saline is initiated.

<table>
<thead>
<tr>
<th></th>
<th>Serum Sodium (mEq/L)</th>
<th>Δ Serum Sodium from Baseline</th>
<th>Neurological Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour into infusion</td>
<td>119</td>
<td>3</td>
<td>Obtunded</td>
</tr>
<tr>
<td>2 hours into infusion</td>
<td>122</td>
<td>6</td>
<td>Obtunded</td>
</tr>
<tr>
<td>3 hours into infusion</td>
<td>122</td>
<td>6</td>
<td>Arouses to painful stimuli</td>
</tr>
<tr>
<td>4 hours into infusion</td>
<td>123</td>
<td>7</td>
<td>Opens eyes on command</td>
</tr>
<tr>
<td>1 hour after infusion discontinued</td>
<td>124</td>
<td>8</td>
<td>Follows commands</td>
</tr>
<tr>
<td>2 hours after infusion discontinued</td>
<td>124</td>
<td>8</td>
<td>Follows commands</td>
</tr>
</tbody>
</table>
Monitoring of 3% Sodium Chloride

• Overall goal: Avoid overcorrection
• Monitor
 – Basic metabolic panel
 – Frequent serum sodium levels
 – Neurologic function
 – Serum osmolality
 – Urine osmolality and sodium concentration
 – Fluid intake and output

Managing Overcorrection

• Rapid increase in serum sodium (>12 mEq/L/24 hr) may result in serious neurologic sequelae
 – Withhold current therapies known to increase serum sodium
 – Administer 5% dextrose in water or oral water
 – Consider desmopressin

Patient Case: GH’s Outcome

- No additional hypertonic saline administered
- Awake and alert on day 4 with no additional seizures
- Serum sodium at discharge: 135 mEq/L
Key Points

• Acute severe hyponatremia can lead to severe symptoms
• Cautious correction of sodium is important to prevent demyelination as fluid leaves the brain
• Hypertonic saline infusion requires vigilant monitoring to avoid overcorrection
Questions?

Don’t forget to process your CPE statement online. Instructions are included in your meeting packet and on page 24 of the handout.

Please write the following code in the box provided on the CPE instructions page.

Enrollment Code:

Thank you!