Meniscal Tears

Robert C. Manske, PT, DPT, MEd, SCS, ATC, LAT, CSCS
Professor and Chair
Wichita State University
Department of Physical Therapy
Via Christi Health, Wichita, Kansas

Described originally as functionless remains of leg muscles

Meniscus – *Meniskos* – “Crescent”
Mene – “Moon”

Embyologic remnants which when torn were potent generators of arthritis

“A far too common error is shown in the incomplete removal of the injured meniscus”

Incidence

- One of most common injuries treated by orthopedic surgeons
- ABOS – most common procedure reported during Part-II Examination was meniscal debridement.

Incidence

- Approximately 1 Million meniscal surgeries performed each year.
- Incidence in athletes reported to be 61/100,000.

Medial Mensicus

- C-shaped (semicircular)
- 3.5 cm in length
- Wider posterior than anterior
- Attached to MCL and medial capsule
- Semimembranosus attached to post horn and causes post translation of MM during knee flexion
- Injured 2-5 times more than LM

Lateral Meniscus

- Circular, O-shaped; 4/5 ring
- Similar width anterior and posterior
- 2 times as much mobility as medial meniscus
- Popliteus tendon attaches to post horn of LM causing post translation during knee flexion
Lateral Meniscus

- Lateral (80%) covers larger surface area of tibia than medial (60%) meniscus

Anterior and Posterior Meniscofemoral Ligaments

- Run from posterior horn of lateral meniscus to medial femoral condyle
- Just in front of or behind the posterior cruciate ligament
- Anterior – Ligament of Humphrey
- Posterior – Ligament of Wrisberg

Ultrastructure

- Debate as to whether cells of meniscus are fibroblasts, chondrocytes, or mixture of both
- Classified as fibrous tissue or fibrocartilage?

Ultrastructure

- Generally termed “fibrochondrocytes” because of their chondrocyte appearance and their ability to synthesize a fibrocartilage matrix

Ultrastructure

- Extracellular matrix of collagen (60-70% of dry weight).
- 90% type I collagen
- Types II, III, V and VI have been identified

Ultrastructure

- Electron Microscopy
- Three different collagen framework layers
Ultrastructure

- **Superficial layer**
 - Fine fibrils woven into mesh-like matrix

- **Surface layer**
 - Just below superficial layer
 - Irregularly aligned collagen bundles

- **Middle layer**
 - Collagen coarser, larger and oriented in parallel circumferential direction

Ultrastructure

- **Middle layer** that allows meniscus to resist tensile forces and functions to transmit loads across knee joint.

Material Properties

- Different from that of other collagen tissues such as tendons and ligaments.
- Because of meniscus triangular shape – compressive forces tend to extrude meniscus outward toward periphery.
- Circumferential tensile stress often referred to as “hoop stress.”
- Derived from hoops of a barrel.

Mensicus

- General features
- Meniscopatellar ligaments
- Transverse ligament
- Meniscofemoral ligaments

Anatomy of the Meniscus

- Peripheral 1/3
 - Vascular
 - “Red – Red” Zone
 - Ability to heal if torn
 - Aneural
- Middle 1/3
 - Less Vascular
 - Border of vascular supply
 - “Red-White” Zone
 - Aneural
 - White portion

- Medial (inner) 1/3
 - Even Less Vascular
 - “White-White” Zone
 - Aneural
 - White portion
Anatomy of the Meniscus

- Relatively avascular
- Blood supply from superior and inferior medial and lateral genicular arteries
- Branch of popliteal artery

Meniscus

- Vascular penetration
 - 10-30% width of medial meniscus
 - 10-25% of lateral meniscus

Meniscus

- Birth – entire meniscus vascularized
- Avascular with age – weight bearing?
- 2nd decade only peripheral rim

Meniscus

- Remaining portion of each (65-75%) receive nourishment from synovial fluid via diffusion

Anatomy of Mensicus

- Vast majority of mensicus is avascular
- Derive nutrition through passive diffusion or mechanical pumping
- Intermittent compression

Anatomy of Mensicus

- Some feel that because of the denseness of the tissue, diffusion into central core may be marginal.

Anatomy of Meniscus

- Thus “mechanical pumping” (e.g., joint motion) may be essential for continued tissue nutrition.

Coronary Ligaments

- Highly innervated
- Attach menisci to tibial plateau
- Source of joint line pain with meniscal tear

Neuroanatomy

- Nerve fibers and sensory receptors
- Found mainly in peripheral, vascular zone
- In outer 1/3 of meniscus
- Pacinian and Ruffini corpuscles and free nerve endings are found in the anterior and posterior horns
- Provide some proprioceptive benefit when stimulated by motion and deformation

Neuroanatomy

- Most abundant in horns of meniscus
- May play important proprioceptive role during extremes of knee flexion and extension when horns become taut.
- May provide CNS with information regarding joint position

Meniscus Movement

- Unequal movement
- Become distorted
- Inefficient as a chop block
- Forward during extension
- Backward during flexion

Biomechanics of Meniscus

- Total excursion
 - AP
 - Medial
 - 6 mm
 - Lateral
 - 12 mm

Biomechanics of Meniscus

- Morphologic changes of OKC deep knee flexion
- 20 healthy adults
- 0-147° flexion
- Superconductive open-type MR system

Biomechanics of Meniscus

- Backward excursion of anterior horn sig greater than posterior horn

Biomechanics of Meniscus

- No difference in excursion of anterior horn of medial vs lateral meniscus

Biomechanics of Meniscus

- Excursion of posterior horn of lateral meniscus sig greater than that of medial meniscus

<table>
<thead>
<tr>
<th>Position</th>
<th>Medial Anterior horn</th>
<th>Medial Posterior horn</th>
<th>Lateral Anterior horn</th>
<th>Lateral Posterior horn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Knee Flexion</td>
<td>16.79 mm</td>
<td>8.91 mm</td>
<td>15.97 mm</td>
<td>13.15 mm</td>
</tr>
</tbody>
</table>

Biomechanics of Meniscus

- Excursion greater than Thompson
 - Frozen cadaveric knees
 - Age of subjects
 - Mean flexion angles of 120° vs 147°
Biomechanics of Meniscus

- AP diameter significantly reduced in both medial and lateral meniscus

Biomechanics of Meniscus

- Indicates movements of meniscus ensures maximal congruency with articulating surfaces

Biomechanics of Meniscus

- This dynamic congruity facilitates:
 - Load transmission
 - Shock absorption
 - Stability and lubrication

Knee Extension
- Patella moves cephalically
- Tightens patellomeniscal ligaments (Kaplan’s Lig.) which attaches to anterior horn of meniscus and pulls anteriorly

Functions of Meniscus
- Distribute weight bearing loads over a larger surface area and increase stability
 - Medial = 50% of load in medial compartment
 - **Lateral** = 70% of load in lateral compartment

Functions of Meniscus
- Joint stability
- Increase joint congruency by deepening tibial plateau
- Limits abnormal movements which you get with a meniscectomy
- Guides normal movements
Functions of Meniscus

- **Joint Stability**
- **Cadaver Study**
 - Significant increased varus and valgus laxity with absent ACL and medial meniscus as compared to ACL deficiency alone with intact medial meniscus.

- **Meniscectomy alone may not significantly increase joint instability.**
- **Meniscectomy with ACL insufficiency significantly increases anterior laxity.**

- **Cadaver Study**
 - Significant increased load on ACL graft after medial meniscectomy.

Meniscus Crucial

- Fairbank described changes that accompany meniscal removal:
 - Narrowing of joint
 - Flattening of femoral condyle
 - Formation of osteophytes

Functions of Meniscus

- Improved articular nourishment (?)
- Chondrocytes the cells of articular cartilage receive nutrition via imbibition
- Joint approximation causes joint compression which forces the nutrients near the articular surface
- CPM helps maintain the integrity of the articular cartilage

Problems When Meniscus Removed

- Abnormal path mechanics
 - Results in OA
 - Results in DJD
- Partial meniscectomy
 - Results in joint instability
 - Leads to degeneration of articular cartilage
- ACL deficient knees
 - Leads to tears of the menisci within 6 months, secondary to instability
Normal Load Distribution
- When meniscus is removed contact area drops to 40% that of normal
- Right: Contact area of intact meniscus

Abnormal Load Distribution
- Less contact area gives rise to increased stress on articular cartilage, mechanical damage to chondrocytes and matrix
- Resection of as little as 15-34% of meniscus increased contact pressures by over 350%.
- Partial meniscectomy not benign!

Abnormal Load Distribution

- 11 models used to investigate effect of location of meniscectomy on tibial articular cartilage

Abnormal Load Distribution

- Extent of degenerative changes are directly proportional to amount of excised meniscus

Mechanism of Injury

- Flexion/Rotation injury
 - Torsion and axial loading
 - In a flexed position and trying to turn or extend
 - Coupled movements occur commonly in athletic endeavors

- Trapped posterior horn
- May create a bucket handle tear

Mechanism of Injury

- Older – degenerative tears may be asymptomatic

Mechanism of Injury

- More common with ACL tears as a result of abnormal tibial translation
 - Lateral meniscal injury usually associated with acute ACL tear
 - Medial meniscal injury more often in persons with chronic ACL insufficiency

O’Donoghue Triad

- Lateral meniscus?

Names of Medial Tears

- Bucket handle
- Flap
- Horizontal cleavage
- Radial
- Degenerative
- Double radial

Names of Medial Tears

- Bucket handle
- Flap
- Horizontal cleavage
- Radial
- Degenerative
- Double radial
Names of Lateral Tears
- Bucket handle

Symptoms of Meniscal Injury
- Popping, catching, and locking
- Pain – Poor localization.
- Effusion (?)
- Pain or popping along joint line with forced flexion and rotation

Knee Locking
- 16 year old boy motorcycle accident
- Fractured pelvis and injuries to both limbs
- 10 cm laceration lat knee

Knee Locking

- Immediate debridement
- Long saphenous vein grafting to severed femoral artery
- Fasciotomies
- Skin grafts applied to faciotomies
- Non displaced patellar fracture
- Uneventful recovery
- Returned 6 months later with locking in knee

www.casesjournal.com/content/3/1/72
Physical Examination

- Diagnosis can be made accurately in 75% of knees based on history alone!

- Joint line tenderness – 77-89% sensitivity
 - McMurray test – 79% sensitivity

Examination

Examination Pearls

- Vertical vs. horizontal pain.
- Vertically oriented pain probably MCL/LCL pain
- Horizontal pain probably meniscus
- Most posterior horn so pain posterior to midline

Effect on High Level Athletes

- Describe risk, time lost effect on performance of isolated meniscus tears in NBA.
- Preinjury and postinjury player efficiency ratings used to compare

Effect on High Level Athletes

- Lateral more likely up to age of 30 years
- Then after medial
- BMI > 25 higher chance of tear
- 19.4% did not return to play
- For those that did return no sig change in PER

Treatment Options

- No treatment
- Total meniscectomy
- Partial meniscectomy
- Meniscus repair

Meniscal Healing

- Formation of fibrin clot
- Acts as scaffold for repair
- Meniscal and synovial cells migrate into fibrin clot
- Vessels from capillary plexus and synovial fringe grow into clot

Meniscal Healing

- Heal by formation of fibrovascular scar tissue
- 2 weeks fibrin clot

Meniscal Healing

- 5 weeks histological evidence of regeneration
- In the canine model occurs by 10th week
- Full remodeling of scar - up to 6 months

Meniscal Healing

- Full strength of repair tissue as a function of time has not been delineated!
No Treatment

- Not all tears symptomatic
- Prevalence of tears found in asymptomatic individuals 5-36%

No Treatment

- Small stable asymptomatic tears do not need to be treated surgically
 - Vertical longitudinal tears < 1 cm long
 - Small radial split tears < 3 mm
- If significant and left alone can degrade hyaline cartilage

Partial Meniscectomy

- For tears in the white, inner area that won’t heal on own
 - Flap tears
 - Radial tears in the inner avascular (white-white) area
 - Horizontal cleavage tear
- Very common procedure
- Motorized shaver to smooth out edges
- No soft tissue healing restraints
- Rehab symptom limited
- 100% return in 3-4 weeks
Treatment

- Young or middle aged?
- Presence or absence of arthritis?

Meniscus Repair

- Save meniscus at all cost
- Most common for peripheral, vascular area tears
- Small tears in this region may heal on own, while larger tears may require sutures
- Have attempted to pack fibrin clot to speed-up and improve healing
- Creation of vascular channels

Fibrin Clot

- Have attempted to pack fibrin clot to speed-up and improve healing
- Brings hematoma chemotactic factors to tissue

Trephination

- Creation of vascular channels from peripheral (red zone) to central avascular area (white zone)
- Fox – patient survey and clinical exam (90% good to excellent results)
- Zhang 25% healing in goat model

Synovial Abrasion

- Use of surgical rasp
- Activates chemotactic factors stimulate healing
- Abrade margins and superficial layer

Inside-Out Meniscus Repair

- Placement of sutures depend on tear size and location
- All inside repairs may use fewer sutures and may require a delay in full weight bearing
Meniscal Repair

- Requires soft tissue healing restraint times
- Slower rehabilitation
- Now performing meniscal allografts

Outside-In Techniques

- Passage of spinal needle through skin into meniscus tear with arthroscopic visualization
- Tied off in the joint
- Fairly weak construct

All-Inside Using Implants

- Use of nonsuture implants for fixation
- FastT-Fix
- Meniscal arrows
- Surgeon must be cognizant of potential for articular cartilage damage
- Watch for proud head!

Distinction: Repair vs Meniscectomy

- Important to know how rehabilitation is affected by meniscus repair vs. meniscectomy
- Standard exercises detrimental to meniscus repair
- Very small stresses may disrupt healing process
- Full ROM may place undue stress on meniscus repair

Distinction: Repair vs Meniscectomy

- Repair must heal without stress or abnormal laxity
- Undue stress may cause scar to elongate
- Weight-bearing limited initially
- Watch for over aggressive therapy, postoperative synovitis, or overuse synovitis
- Need normal inflammatory cycle to run its course

Distinction: Repair vs Meniscectomy

- Must treat each patient with individualized program
- Understand biomechanics of the joint, the healing process and the biomechanics of therapeutic exercise program
Tear Location and Sport

- Medial > Lateral Meniscus
 - Soccer
 - Basketball
 - Skiing
 - Baseball

- No difference
 - Volleyball
 - Gymnastics
 - Sailing
 - Rowing
 - Wrestling
 - Judo
 - Handball

Partial Meniscectomy Post Operative Protocol

- Immediate ROM and WBAT
- Patients will normally resume work after 1-2 weeks
- Full activity 2-4 weeks
- Competition in 4-6 weeks

Meniscectomy

- 120 patients
- RCT = 3 groups
 - HEP = 47
 - NSAIDS = 52
 - PT = 21
- Follow-up = 42 days

- Neither routine administration of NSAIDs nor routine physiotherapy is justified after arthroscopy of the knee

Partial Meniscectomy

- Early supervised PT has not been associated with better outcomes when compared to a HEP
- 84 patients; 41 HEP; 45 PT + HEP
- Blinded sessions 5 and 50 days after surgery

Partial Meniscectomy

- Outcome measures subjective scales
- Kinematic knee function
 - Level walking
 - Stairs
- Horizontal and vertical hops

Partial Meniscectomy

- 3x/wk x 6 wks
- No significant change between supervised with home program and home program only.

Partial Meniscectomy

- Prospective study
- 30 patients following arthroscopic PMM
- HEP (15); Supervised PT (15)
- Supervised PT vs. HEP
- Function at 2, 4, 8 weeks

Partial Meniscectomy

- Outcomes included isokinetic strength tests and subjective outcomes
- No difference in strength or outcomes between two groups
- % Deficit in quadriceps peak torque
 - HEP = 22%
 - Supervised PT = 22.1%

Partial Meniscectomy

- Prospective RCT
- 31 men; PT + HEP (15); HEP only (16)
- Assessed pre op and 3 weeks PO
- Maximum voluntary isokinetic strength quads
- Supervised 9 visits (15) vs instruction in PO management (16)

Partial Meniscectomy

- Experimental group (supervised therapy) had better knee extensor strength recover than control group
- Strength difference was 26% better in supervised therapy group
- Pain and patient reported knee function – NSD

Partial Meniscectomy

- Significant isokinetic torque deficits of knee extensors for as long as 6 months after arthroscopic meniscectomy.

Partial Meniscectomy

- 16 patients
- Early training delayed 2 weeks + HEP
- Late training delayed 6 weeks + HEP
- NSD
- Training in early stages did not improve recovery of strength

Partial Meniscectomy

- These knee flexor and extensor deficits increase the need for supervised rehabilitation.

Partial Meniscectomy

- Many have persistent medial knee pain, narrow medial joint space, and varus alignment when compared to non-operative knees.

Partial Meniscectomy

- Results in degenerative arthritis and ligamentous laxity.
- Patients do worse after lateral than after medial meniscectomy.

Partial Meniscectomy

- A partial medial meniscectomy generally does better than a partial lateral meniscectomy.

- 54% satisfactory results after lateral meniscectomy.
- Increased interval from injury to surgery resulted in less satisfactory results.

- 15 years after meniscectomy – 46% of patients reduced sporting activity.
- 89% had degenerative changes on radiographs.
- Some seen as early as 4.5 yrs.
- Radiographic changes more often lateral compared to medial.

Partial Meniscectomy

- 210 patients at 10-22 years after meniscectomy
- 61% satisfactory results
- Adverse factors
 - Increased age
 - Abnormal alignment
 - Lateral vs medial meniscectomy

Partial Meniscectomy

- Search 1950-2013
- 18 RCT – 6 for MA
- PT + HEP improved function and ROM more than HEP alone
- Most studies have high to moderate bias risk

Methodological flaws of studies

- Small sample size
- Lack of standardization of outcomes
- Not using standardized guidelines - CONSORT

- Case control study
- Assessed for adverse events
- 17,774 patients PMM
- 208 had adverse events
- Patients with diabetes and pulmonary disorders had higher risk
- Smokers had increased odds of readmissions
- Smoking cessation?

Meniscal Repair

- Two schools of thought
- **Conservative**
 - Limit early weight bearing
 - Limit knee flexion > 90 for 4-6 weeks
 - Hold sports competition for 5-6 mo.
- **Accelerated**
 - Full early weight bearing
 - Unrestricted ROM
Repair Guidelines

<table>
<thead>
<tr>
<th>ROM of Brace</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-70</td>
<td>Week 1</td>
</tr>
<tr>
<td>20-80</td>
<td>Week 2</td>
</tr>
<tr>
<td>10-90</td>
<td>Week 3</td>
</tr>
<tr>
<td>0-135</td>
<td>Week 4</td>
</tr>
</tbody>
</table>

Conservative Repair Guidelines

<table>
<thead>
<tr>
<th>Weight Bearing</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWB</td>
<td>Week 1-2</td>
</tr>
<tr>
<td>PWB (25%)</td>
<td>Week 3</td>
</tr>
<tr>
<td>PWB (50%)</td>
<td>Week 4</td>
</tr>
<tr>
<td>PWB (75%)</td>
<td>Week 5</td>
</tr>
<tr>
<td>FWB</td>
<td>Week 6</td>
</tr>
</tbody>
</table>

Meniscus Repair Weight Bearing Status

<table>
<thead>
<tr>
<th>Authors</th>
<th>FWB Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeHaven KE, Clin Orthop 1985;198</td>
<td>FWB delayed 8 weeks</td>
</tr>
<tr>
<td>McLaughlin et al, Orthopedics 1994;17</td>
<td>FWB delayed 3 weeks</td>
</tr>
</tbody>
</table>
All Had Successful Healing Rates
Despite Varying Protocols

Aggressive Protocols
- Immediate unrestricted weight bearing
- Unlimited brace ROM
- 50% failure
- Changed their protocol to restricted weight bearing, crutches 4 weeks, no squatting for 4 months.

Postoperative Immobilization
- To protect sutured cartilage, motion may be restricted to safe portion of range
- Motion may be controlled to allow 0-90 or 20-90 degrees of knee flexion
- May be required to wear protective motion brace
- Cryotherapy, compression, and elevation
Maximum Protection Phase (0-4 weeks)

- Goals
 - Wound healing
 - Quadriceps activation
 - Decreased effusion
 - Normal patellar mobility
 - Proximal strengthening (TLS)

- Restrictions
 - WBAT with crutches (braced locked at 0 or 20)
 - PROM limited 0-90 for 4-weeks
Maximum Protection Phase
(0-4 weeks)

- One exception to early weight bearing is a radial tear in the periphery that may cause a distraction force.

WB rationale

- Fibrin clot formation at 2 weeks
- Shear stress detrimental
- Hoop stress may be beneficial?
- The most stable position seen in full extension (with arthroscopy)!
- Clinical application of Wolff’s law!

WB rationale

- Hoop stresses are primarily absorbed at the periphery of the meniscus
- May actually approximate healing tissue

WB rationale

- Weight bearing with tibiofemoral rotation during knee flexion
- Produce shear forces capable of disrupting healing meniscal tissue

ROM Rationale

- Active ROM (dogs)
- More collagen laid down
- Increased uniformity of repair at 10 weeks

ROM Rationale

- Dogs with no motion restrictions
- Allowed immediate weight bearing
- Fibrin clot becomes fibrovascular scar tissue
- Complete healing

Immobilization
- Immobilized dogs
- Negative impact on outcomes
- Loss of meniscus dry weight

Maximum Protection Phase (0-4 weeks)
- **Treatment**
 - RICE
 - EMS
 - Patellar mobilization
 - Scar tissue mobilization
 - AAROM
 - Strengthening - Hip (TLS) – SLR x 4
 - Quad/Ham isometrics

Clinical Milestones
- Minimal effusion
- Good quad tone
- Good patellar mobility
- Min to no pain
- AROM 0-90
- Single limb stance without compensation
Moderate Protection Phase
(4 to 6 weeks)

- Goals
 - WBAT with crutches braced locked 0-90
 - Progression of CKC exercises
 - No patellar pain

- Restrictions
 - Gradually increase ROM of flexion to 90 based on pain assessment
 - Flexion to 90 after 4 weeks
 - Progress slowly after to protect posterior horn tears

- Treatment
 - Pain management
 - Control effusion
 - NMS of quads
 - Mini-squats – slowly introduce more CKC
 - Step-ups
 - AROM
Moderate Protection Phase
(4 to 6 weeks)

- Treatment
 - Flexibility exercises
 - CV training
 - Toes raises
 - Cycling (ROM only – low load)

Clinical Milestones
- Full weight bearing with no compensation
- Normal gait
- AROM 0-90
- Good quad tone
- SLR without lag
- Normal patellar mobility

Minimum Protection Phase
(6-10 weeks)

- Progression dependent on ROM, knee strength, endurance, absence of effusion
- Progress strengthening with step-ups, step-downs, lunges, slide board
- Continue to progress general endurance
- When meniscal integrity tests are normal may begin light jogging, and mini plyometrics increasing to sprinting and jumping as patient tolerates
Minimum Protection Phase
(6-10 weeks)

- Goals
 - Increase:
 - Strength
 - Power
 - Endurance
 - Normal knee ROM
 - Prepare athlete for full participation/work

Minimum Protection Phase
(6-10 weeks)

- Restrictions
 - Avoidance of pivoting
 - Flexion ROM to 130°

Minimum Protection Phase
(6-10 weeks)

- Treatment
 - All exercises as previous
 - Progress quad strengthening
 - Balance training
 - Leg presses
 - Mini-squat
 - Lunge
 - Step-ups (6” step)
Minimum Protection Phase
(6-10 weeks)

Clinical Milestones

- Improved stability with unilateral stance
- Minimal to no pain
- Full ROM
- Equal hip strength
- Quad strength < 20% of contralateral side

When Safe to Return to Pivoting

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barber FA, Arthroscopy 1994;10(2)</td>
<td>ASAP</td>
</tr>
</tbody>
</table>

Return to activity Phase (11-16 weeks)

Goals

- Increased power and endurance
- Return to skills
- Preparation for return to full unrestricted activity
Return to activity Phase (11-16 weeks)

- **Restrictions**
 - Avoidance of full hyper-flexion (deep squatting) for up to 6 months

Return to activity Phase (11-16 weeks)

- **Treatment**
 - Exercise as previous
 - Endurance exercises
 - Agility drills (low - level)
 - Plyometric training (14 weeks)
 - Sport specific training
 - Initiation of running
 - Initiation of cutting drills

Return to activity Phase (11-16 weeks)

- **Clinical Milestones**
 - Full confidence in knee
 - Pain free activity at 5 months
 - Satisfactory clinical examination
 - Functional testing 90% of contralateral leg
 - Isokinetic testing 90% of contralateral leg
Discharge Criteria

- Satisfactory clinical exam
- No swelling
- No joint line tenderness
- Negative McMurray and Apley test
- Satisfactory isokinetic test
- Satisfactory functional tests
- Physician approval

Thank You!