IMPACT OF ANTIBIOTIC MINIMUM INHIBITORY CONCENTRATION ON MORTALITY IN PATIENTS WITH SUSCEPTIBLE PSEUDOMONAS AERUGINOSA OR KLEBSIELLA PNEUMONIAE BACTEREMIA EMPIRICALLY TREATED WITH B-LACTAMS

Riley J Williams II, Pharm.D.
PGY-2 Infectious Diseases Resident
Oklahoma City VA Medical Center

LEARNING OBJECTIVES
BACKGROUND

- Bacteremia is among the top 10 leading causes of death in the United States
 - Nosocomial infections carry a high risk of mortality (~27%)
 - Certain organisms, such as *Pseudomonas aeruginosa*, have mortality rates as high as 62%
- Beta-lactam antibiotics serve as first-line, empiric treatment for bacteremia
 - Broad spectrum
 - Bactericidal

BACKGROUND

- Uncertainty exists for minimum inhibitory concentration (MIC) breakpoints
 - Breakpoints set by Clinical and Laboratory Standards Institute (CLSI)
 - Recently revised for Enterobacteriaceae and *Pseudomonas*
 - Based on limited *in vitro* and *in vivo* (animal) studies
 - Pharmacokinetic and pharmacodynamic outcomes
 - Previous clinical studies have demonstrated increased mortality for bloodstream infections caused by susceptible organisms with elevated MICs and treated with beta-lactams
STUDY AIMS

- Elucidate whether mortality from susceptible
 Pseudomonas aeruginosa or Klebsiella pneumoniae
 bacteremia is influenced by the MIC of the β-lactam
 antibiotic used for treatment (particularly initial, empiric
 treatment)
- Hypothesis: mortality from bacteremia caused by such
 organisms will increase as MIC rises within the
 susceptible range
- Ultimate objective is to guide empiric and targeted
 antibiotic selection for the treatment of Gram negative
 bacteremia

STUDY DESIGN

- Three concurrent, retrospective studies
 - MIC trends study
 - Pseudomonas bacteremia mortality study
 - Klebsiella bacteremia mortality study
- Studies will utilize data from the Veterans Affairs
 Informatics and Computing Infrastructure (VINCI)
 database
 - Contains information for patients at all VA
 medical centers in the US
STUDY 1

- Assess trends in MICs and susceptibility rates for bloodstream isolates of *P. aeruginosa* and *K. pneumoniae* across the nation’s VA Medical Centers
 - Temporal
 - Geographic
 - Facility demographic
- Will assess the following antibiotics:
 - ceftriaxone, cefotaxime, ceftazidime, cefepime, aztreonam, piperacillin/tazobactam, ertapenem, imipenem, meropenem, moxifloxacin, ciprofloxacin, levofloxacin, gentamicin, tobramycin, and amikacin

STUDIES 2 & 3

- Retrospective analyses of mortality in bacteremia
- Study population drawn from VINCI data 2007 to 2013
- Inclusion criteria
 - bacteremia due to *P. aeruginosa* or *K. pneumoniae*
 - susceptibility data including (MIC) is available
 - receipt of appropriate β-lactam antibiotic within 24 hours after collection of the positive blood culture and given for at least 72 consecutive hours
- Exclusion criteria
 - polymicrobial blood cultures
 - isolates that are intermediate or resistant to the initial antibiotic
 - receipt of a concomitant β-lactam antibiotic to which the infecting organism is susceptible or intermediate within the first 72 hours of therapy
STUDIES 2 & 3

• Data to collect:
 • Demographic characteristics
 • Hospital course (i.e. dates of admission, discharge)
 • Comorbidities
 • Source of bacteremia
 • Laboratory data
 • Microbiologic data
 • Medication administration data
 • Severity of illness (modified Pitt Bacteremia Score)

STUDIES 2 & 3

• Primary Endpoint
 • Thirty-day all-cause mortality from the date of collection of the first positive blood culture

• Secondary Endpoints
 • Mortality at discharge
 • Duration of bacteremia
 • Length of stay after first positive blood culture
 • Readmission rate within 30 days of discharge
STATISTICAL ANALYSIS

- Baseline demographic characteristics and clinical outcome will be compared between patients within each MIC stratum for a given empiric antibiotic
 - Kruskal-Wallis test for continuous variables
 - χ-squared or Fisher’s exact test for dichotomous variables
- Univariate variables will be determined associated with the primary outcome
- Multivariate analysis will be conducted to identify independent variables associated with the primary outcome, including univariate variables with p < 0.10
- The a priori alpha for all statistical analyses will be set at p < 0.05

REFERENCES