Neurofibromatosis 1 and 2 - What you need to know for primary care

Beth Heuer, DNP, CPNP-PC, PMHS
Division of Child Neurology/Child Development Unit
Children's Hospital of Pittsburgh of UPMC

Disclosures
- I have no financial disclosures
- Because I live in the world of pediatrics, I will briefly discuss off-label and investigational uses of drugs and devices

Learning Objectives
- Describe diagnostic criteria for NF-1 and NF-2
- Identify common co-morbidities and complications specific to each disease process
- Discuss disease management guidelines and treatment strategies

Neurofibromatoses
- NF1 and NF2 are autosomal dominant inherited multi-system disorders
 - Inheritance pattern for schwannomatosis less clear. Seems to be autosomal dominant with incomplete penetrance
- 3 distinct diseases, each associated with a different genetic mutation
- Diagnosis based on clinical findings

Fast facts - NF1
- Affects ~1 in 3,000 people
- Previously known as von Recklinghausen disease
 - NOT "Elephant Man" syndrome
- Café au lait macules are seen in most individuals
- Axillary/inguinal freckling is seen 90% of the time
- Cutaneous neurofibromas are common
 - Many plexiform neurofibromas are internal and asymptomatic
- 10% risk of developing a cancerous tumor
- ~2/3 of patients will never experience significant health problems
- Life expectancy is slightly reduced (most likely due to malignant tumors and vascular manifestations)
NF1 Diagnostic Criteria *(must exhibit 2)*
- 6 or more café au lait macules (CALs) >5 mm in prepubertal patients and 15 mm in longest diameter in postpubertal patients
- 2 or more neurofibromas or 1 plexiform neurofibroma
- Inguinal or axillary freckling
- Optic pathway glioma
- 2 or more Lisch nodules (iris hamartomas)
- A distinctive osseous lesion
- A first-degree relative with NF-1 according to these criteria

Pathophysiology
- NF1 gene located on chromosome 17 at band q11.2
 - This gene encodes neurofibromin, which suppresses tumors by downregulating Ras proteins
 - When the NF1 gene does not work, the Ras cell signaling pathway goes into overdrive
 - Genetic mutation leads to nonfunctional version of neurofibromin, resulting in tumors along nerves throughout the body

NF1 Genetics
- 50% inherited; the other 50% are de novo mutations
 - Other family members may have NF1 and not know it
 - Extremely variable gene expression
 - Genetic testing is available to confirm a clinical diagnosis (90-95% detection rate) or to make a diagnosis when only one of the criteria is met
 - False negatives or results of ‘unknown significance’

Mosaicism
- Bloodwork may be negative for NF mutation, or show positive mutation in only a percentage of the lymphocyte sample
- Can skin biopsy 2 or more CAL macules (different sites) and look for gene mutation in skin cells
- Can also consider testing urine sedimentation (due to shedding of epithelial cells) to look for mutation
- Proportions of gonadal tissue may also contain the mutation

Segmental NF
- Occurs as a result of mosaicism
- Clinical features limited to one area of the body
 - Example: Skin lesions do not cross the midline

NF1 disease surveillance
 - Yearly clinical evaluation
 - Skin exam for new findings
 - Growth parameters
 - Neurologic exam
 - Skeletal changes
 - Blood pressure
 - Developmental assessment
 - Review of school progress
 - Ophthalmologic exam
 - MRI of brain and orbits (yearly from age 18 months until ~age 7)
 - MRI of total spinal canal
 - Done if symptomatic for back pain, numbness, weakness
 - May be done to determine presence of 2nd diagnostic criteria
Skin findings
• Remember: “All that spots is not NF” and not all NF patients have café au lait spots...

Skin findings
Cutaneous neurofibromas
Subcutaneous Neurofibromas

Photos courtesy of Google Images

Skin findings
Plexiform neurofibroma

Photos courtesy of Google Images

Malignant peripheral nerve sheath tumors (MPNSTs)
• MPNSTs are the primary cause of early mortality in NF1 patients
 ▫ Mean age of presentation is 27.6 years
 ▫ 10% lifetime risk of developing a MPNST
 ▫ Can develop from any benign plexiform tumor
• Fast-growing cancers
 ▫ Often associated with severe pain
 ▫ Can be difficult to treat
 ▫ Can adapt biologically and become resistant to treatment
 ▫ 5 year survival rate ~46% (females>males)

Management of skin lesions
• Surgical resection
 ▫ Done when there is cosmetic disfigurement, pain, or alteration in function
• Neurofibromas do grow back
• Radiation therapy is avoided
 ▫ Can stimulate the growth of plexiform neurofibromas
• Alternative techniques for dermal tumor removal
 ▫ CO2 laser ablation and electrosurgery
 ▫ Er:YAG laser treatment

Ophthalmologic findings
• Lisch nodules
• Optic nerve tortuosity
• Congenital ptosis
• Sphenoid bone dysplasia
 ▫ May cause asymmetry and proptosis
Optic glioma

- ~20% risk of developing an optic pathway glioma
 - Most common type of central nervous system tumor in NF1
 - See in children as young as 18 months of age
 - At risk until typically between ages 6-7
 - Typically benign, but can ultimately impact vision

- Symptoms
 - Involuntary eye movement
 - Proptosis
 - Squinting
 - Vision loss in one or both eyes
 - Starts with the loss of peripheral vision
 - May eventually lead to blindness
 - Growth issues or precocious puberty

Management of optic gliomas

- Monitored closely
 - Treated only when and if they interfere with vision
- May be unresponsive to chemotherapy
 - Urgent need for effective drug treatments!
- When tumors are present along optic pathway, brainstem and cerebellum, surgery can cause loss of vision or other function

NF1 and CNS tumors

- Pilocytic astrocytomas
 - Many tumors are low grade, asymptomatic and require no treatment
 - Grade III and IV astrocytomas require aggressive treatment
 - Complete surgical resection + chemotherapy effective

Distinctive osseous lesions

- ~1/3 of patients with NF1 will develop some type of bone abnormality
 - Long-bone dysplasia
 - Bone structural weaknesses
 - Scoliosis
 - Osteopenia or osteoporosis
 - Short stature
 - Relative macrocephaly

Scoliosis

- Most common bone abnormality in NF1
 - Seen in about 30% of patients.
 - A rapidly-progressing form of kyphoscoliosis, called dystrophic scoliosis, may develop between ages 3 and 5 years of age
 - Requires surgical correction.
 - Milder forms of scoliosis typically develop during adolescence.
MRI findings

- T2 hyperintensities (UBOs) found in up to 80% of children with NF1
 - Tend to disappear with age
 - Predominantly show up in two regions of the brain: the globus pallidus (regulates voluntary movement), and the cerebellum (regulates balance)
 - ?? correlation with learning disabilities

Vascular abnormalities in NF1

- A variety of vascular abnormalities can occur in NF1, including aneurysms and stenosis
 - Renal artery stenosis responsible for HTN
 - Routine blood pressure measurement is essential
 - Most persons with NF1 are not routinely screened for vascular abnormalities
 - Often progress silently without detection

“Spinal NF1”

- Form of NF1
- Develop multiple spinal tumors on both sides of the spinal cord & on the nerve roots of the spine
- Tumors may affect all nerve roots.
- Typically later onset
- May otherwise exhibit only minimal features of NF1

Hormonal influences

- Pubertal development typically normal
 - Precocious puberty associated with optic chiasm tumors
- During puberty, dermal neurofibromas have been reported to increase in number
 - May also see increase in axillary/inguinal freckling and CALs
- Plexiform and dermal neurofibromas tend to grow in pregnant NF1 patients
 - Pregnancy may also trigger onset of hypertension and proteinuria
NF1 and the GI tract
- Oral tumors, such as neurofibromas on the tongue
 - Impact on speech and oromotor movement
- Gastrointestinal stromal tumors (GIST) affect up to 1/3 of persons with NF1
 - 20% of NF1-related GISTs may become cancerous
 - Must be carefully monitored and appropriately managed

Other co-morbidities
- Below average height
- Above average head circumference
- High blood pressure (due to renal artery stenosis)
- Headaches (20% of patients)
- Seizures (~7% of patients; ~3x > general population)
- Small number of pheochromocytomas (adrenal tumors) reported
- Peripheral neuropathy

NF1 and learning disabilities
- Estimated that up to two-thirds of patients with NF1 will develop some form of learning disability
- Deficits in attention, visual-spatial memory and executive function
- Language problems
- Academic underachievement
- Majority of patients show average to low-average IQ scores
- Neuropsychological testing often indicated
 - Recommend retesting during big transition periods (school/work)

NF1 and ADHD
- Up to a half of children with NF1-related learning disabilities will also develop attention deficit disorder (ADHD), with or without hyperactivity
- Treatment principles the same as with general population with ADHD
 - Behavioral modification therapy
 - Medication management
 - Accommodations in school and home setting

Link to autism?
- 2013 UK study in Pediatrics
 - NF1 population prevalence estimate
 - 24.9% ASD (95% C.I. 13.1%–42.1%)
 - 20.8% ‘broad’ ASD with partial features (95% C.I. 10.0%–38.1%)
 - A total of 45.7% showing some ASD phenotype

Management of school issues
- Determination of relative strengths and weaknesses
- Educational testing and appropriate IEP services
- School-based counseling for social concerns
- Section 504 accommodation plans
 - Learning and behavioral accommodations for ADHD symptoms
 - Accommodations for orthopedic concerns

Image courtesy of Google Images
Social challenges

- Concerns for body image
- Isolation
- Lower self-esteem
- Difficulty with social cues and speech pragmatics
- Concern for the future
- Family planning
- Transition from pediatric to adult care

Photos courtesy of Google Images

Legius Syndrome

- Legius Syndrome, or NF1-like syndrome, occurs due to mutations in the SPRED1 gene
- Characterized by the presence of café-au-lait spots and learning disabilities
 - Does not lead to the development of tumors
- Approximately one to four percent of persons who have café-au-lait spots will ultimately be diagnosed with Legius Syndrome rather than NF1

Photos courtesy of Google Images

Neurofibromatosis-2 (NF2)

- AKA: “bilateral acoustic neurofibromatosis”
 - NF2 mostly affects the CNS, causing brain and spinal cord tumors
- Birth prevalence is 1:25,000
- In the past, largely diagnosed in the teens or twenties
 - There are an increasing number of diagnoses in young children as well as older adults

Images courtesy of Google Images

NF2 Diagnostic Criteria

<table>
<thead>
<tr>
<th>Either</th>
<th>OR</th>
<th>Family history of NF2 (first degree family relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Presence of bilateral vestibular schwannomas</td>
<td>• Either a unilateral vestibular schwannoma before age 30</td>
<td>• Any 2 of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Glioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Meningioma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Schwannoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Juvenile posterior subcapsular lenticular opacity (juvenile cortical cataract)</td>
</tr>
</tbody>
</table>

Images courtesy of Google Images

NF-2 Pathophysiology

- NF-2 gene on chromosome 22q 12.2
 - Codes a protein called Merlin
 - Studies suggest that Merlin helps to organize cells in the developing brain and contributes to effective myelination
 - When Merlin is reduced or absent, these cells may be disorganized
 - Leads to neuropathic pain and tumor formation

Images courtesy of Google Images

NF-2

- Vestibular schwannomas (acoustic neuroma)
 - Lead to gradual hearing loss
- Meningiomas are seen in over half of persons with NF2
 - Though largely benign, they can continue to grow and can eventually become malignant
- Ependymomas
- Risk of developing schwannoma tumors along the spine, in peripheral nerves, and on skin
 - Studies show that more than 90% of patients also suffer eye lesions.
 - Most common: Juvenile subcapsular cataracts in young people
 - Lead to vision loss
- Other complications
 - Tinnitus
 - Headaches
 - Facial pain/numbness
 - Balance issues
 - General muscle wasting
Vestibular schwannoma

Images courtesy of Google Images

NF2 disease surveillance

- Eye exam for presence of cataracts
- MRI imaging
 - brain
 - spine
- Evaluation of hearing
 - audiometry
 - electronystagmography
 - ABRs

Photo courtesy of Google Images

Treatment options

- Removing a vestibular schwannoma when it is still small (in order to preserve cochlear nerve function), then placing a cochlear implant on the same side either during the same surgery or later (to facilitate hearing)
- Auditory brainstem implant v. cochlear implant
- Stereotactic radiosurgery
 - Radiation therapy remains controversial in its use in NF2 tumor management
- Targeted biological therapies

Schwannomatosis

- Rarest, least-well-understood form of NF
- Affects ~1:40,000 persons
 - Rarely seen in people before ages 20s-30s
- May be associated with mutation of the SMARCB1 gene on Ch. 22 at locus proximal to NF2 gene
- Multiple schwannomas on cranial, spinal and peripheral nerves
 - The possibility of NF2 has to be excluded before a diagnosis of schwannomatosis is made

Emerging therapies

- Molecular-targeted drugs that stabilize signaling molecules involved in cell division and growth
- Epidermal growth factor receptor (EGFR) inhibitors
 - Erlotinib (Tarceva)
- Vascular endothelial growth factor (VEGF) inhibitors
 - Ranibizumab
 - Bevacizumab (Avastin)

Where to find help?

Clinics that are part of the NF Clinics Network (part of the Children’s Tumor Foundation)
References

- www.ctf.org
- www.nfnetwork.org
- www.uptodate.com

Special thanks to..

- Drs. Amy Goldstein and Kathy Gardner, for their invaluable assistance in development of this presentation
- Sinnika Davis, MSW

Questions?

- Contact information: beth.heuer@chp.edu

Image courtesy of Google Images