Review of One Lung Ventilation

2011 PANA Conference
Daniel Kelly SRNA
University of Scranton/Wyoming Valley Healthcare
School of Nurse Anesthesia

Goal of One Lung Ventilation
• Provide adequate ventilation and oxygenation while providing a stable lung field for surgical manipulation.

Indications for One Lung Ventilation
• Lung Resection
 • Central or Peripheral Lung Cancer Lesions
 • Surgery remains an appropriate form of treatment of early stage lung cancer
 • Stage I or II small cell lung cancer
• Pneumonectomy
 • Lesions involving left or right mainstem bronchus
• Wedge Resection
 • Small Peripheral Lesions

Indications for One Lung Ventilation
• Single Lung Transplant
 • Idiopathic Pulmonary Fibrosis
 • Primary Pulmonary HTN
 • Cystic Fibrosis
 • Pediatrics
• Anesthetic Considerations in the Post Lung Transplant Patient
 • Extracellular Lung Fluid less easily removed
 • Denervation – loss of cough reflex
 • Aspiration and infection
 • Immunosuppressive Therapy
 • Cyclosporine - nephrotoxic

Objectives
• Identify surgical procedures that require one lung ventilation.
• Describe pre-operative testing for procedures that involve one lung ventilation
• Discuss airway devices (DLT & Bronchial blockers) utilized to achieve one lung ventilation
• Discuss physiology related to one lung ventilation
• Analyze ventilator settings utilized during single lung ventilation
• Identify anesthetic complications related to one lung ventilation

Indications for One Lung Ventilation
• Esophageal Surgery
• Thoracic Aneurysm Repair
• Mediastinal Procedures
• Anterior Approach to Thoracic Spine Procedures
• Dual Chamber Pacemaker insertion
• Confinement of Bleeding or Infection to one lung
Preoperative Testing

• Patients present with multiple co-morbidities
 • (ASA 3 or 4)
• Pulmonary Function Tests
 • Can provide insight into potential for ventilation problems in the perioperative period

Preoperative Testing - Lung Volumes

• Total Lung Capacity (TLC):
 • Sum of all Volumes
 • 5-6 Liters
• Tidal Volume (TV):
 • Volume inspired/expired during normal quiet inspiration
 • 6-8mL/Kg

Preoperative Testing - Lung Volumes

• Inspiratory Reserve Volume (IRV):
 • Volume inspired above a normal TV
• Expiratory Reserve Volume (ERV):
 • Volume of air that can be forcibly expired after a normal tidal volume breath

Preoperative Testing - Lung Volumes

• Vital Capacity (VC):
 • Inspiratory (IRV), and Expiratory (ERV) Reserve Volume, Tidal Volume (TV)
 • Approximately 60mL/kg

Preoperative Testing - Lung Volumes

• Functional Residual Capacity (FRC):
 • Expiratory Reserve Volume (ERV)
 • Residual Volume (RV)
 • Air Remaining in Lungs
 • 1000-1200mL
 • Body Plethysmography
 • Nitrogen Washout test
 • Helium Dilution

Pulmonary Function Testing

• Forced Vital Capacity (FVC)
 • Volume of air that can be exhaled after a maximal inspiration
 • Time: 4-6 seconds
 • Normal Volume: 4 Liters
Pulmonary Function Testing

- Forced Expiratory Volume in one second (FEV1)
 - Volume of air exhaled during a forced expiratory maneuver
 - Normal: 0.8 (80%)

- Forced Expiratory Flow (FEF 25-75)
 - aka Maximum Midexpiratory Flow (MMEF)
 - Middle half of FVC
 - Indicative of flow in medium sized airways
 - Approximate Normal Value 4.7 L/sec (70kg Adult)
 - Decreased in Obstructive Disease
 - Normal in Restrictive Disease

- FEV1 / FVC Ratio
 - Distinguish between Restrictive and Obstructive diseases
 - Normal: 0.8 (80%)

Obstructive vs. Restrictive

- Airways obstructed
 - COPD
 - Asthma
 - Chronic Bronchitis
- FVC = Low
 - Air trapping
 - FEV1 = Low
 - FEV1/FVC Ratio: <0.7
- Example:
 - FEV1 1.2
 - FVC 3.0
 - Ratio = 0.40
 - Restrictive expansion of lung/chest wall
 - Pulmonary Fibrosis
 - Neuromuscular Disease
 - Pregnancy

- FVC = Normal
 - FEV1 = Low
 - FEV1/FVC Ratio >0.8
- Example:
 - FEV1 2.8
 - FVC 3.2
 - Ratio = 0.85

Preoperative Testing

- Pneumonectomy Criteria
- Arterial Blood Gas (Room Air)
 - PaCO2 < 45
 - PaO2 >50
 - FEV1 > 0.8 (800mL)
 - Low predicted FEV1 (less than 0.8) & high PaCO2
 - Pneumonectomy – contraindicated.
Preoperative Testing

- Split Lung Function Tests
- Regional Perfusion Test
 - Xenon Injection – Insoluble radioactive isotope to determine perfusion of lung fields
- Regional Ventilation Test
 - Inhaled Radioactive Gas to determine ventilation of lung fields.

Preoperative Testing

- History & Physical Exam
- Labs: CBC, BMP, Coagulation Profile, ABG (baseline)
- EXG
 - Right Atrial & Ventricular Changes
 - Radiographic Films (CT, CXR)
- Location of Lesions:
 - Central vs. peripheral
 - Structures to be involved during a procedure

Anatomy Review

- Left Main Bronchus: 45-55 degree angle, 4-5 cm
- Right Main Bronchus: 25 degree angle, 2.5 cm
- Right Upper Lobe Bronchus - 90 degree angle off of Right Mainstem
VIDEO Page

- Two Lung Ventilation
 - http://www.youtube.com/watch?v=YbwXAurQr30
- Right Lung Ventilation
 - http://www.youtube.com/user/SchCnty#p/a/u/1/BOV/n3Rb0bQo
- Left Lung Ventilation
 - http://www.youtube.com/watch?v=mWdpZ7JNvM8

Airway Devices

- One Lung Ventilation
 - 25

Double Lumen ETT

- Robertshaw Design
- Sizes 26 - 41 Fr
 - Adult Female: 26-37 Fr
 - Average depth 27 cm
 - Adult Male: 39-41 Fr
 - Average depth 29 cm
- Size selection – largest that can be safely inserted.
- Sources cite Macintosh Blade provides better visualization
- Decrease chance of balloon rupture on kidney
- Placement MUST be confirmed with fiberoptic bronchoscopy
- Movement of DLT of 1 cm can cause serious ventilation/oxygenation problems

Right vs Left Double Lumen ETT Placement

- Teaching has focused on Left Sided DLT placement for most thoracic procedures
 - Potential to block ventilation of Right upper lobe
 - Potential to migrate across carina
- A challenge to conventional wisdom: placement of Bronchole (distal) Lumen into the non-operative lung
 - Right DLT for Left lung surgery
 - Left DLT for Right lung surgery

- Opposite Sided DLT Placement Advantages
 - No interference or stapling of DLT into bronchus during lobectomy or pneumonectomy
 - Allows the trachea lumen to be clamped
 - Bronchoscopy through trachea lumen to assess distal balloon – not interrupt ventilation
 - Tracheal (Proximal) cuff damage during intubation
 - One Lung Ventilation can still be achieved by the functional bronchial (distal) balloon
Right vs Left Double Lumen ETT Placement

- Bronchial cuff passed through cords & turned 90 degrees as tracheal cuff passes cords.
- Tracheal Cuff inflated – placement confirmed
- Bronchial Cuff inflated – fiberoptic confirmation

Double Lumen ETT Placement

- Bronchial Cuff can be passed deeper into bronchus to facilitate placement
 - Easier to withdraw DLT when it becomes warm & malleable
 - Position re-confirmed after patient position change
 - Supine to Lateral
 - Fiberoptic Bronchoscopy

Achievement of One Lung Ventilation

- Achievement of One Lung Ventilation
 - Operative Lung clamped on Adaptor to Vent Circuit
 - Port on Operative lung opened and allowed to deflate

Bronchial Blocker Tubes

- Univent:

Bronchial Blocker Tubes

- Single Lumen Tube with an Endobronchial Blocker device to isolate a Right or Left Mainstem Bronchus
- Indicated in patients with difficult airway anatomy
- Thoracic Trauma Situations
- Pediatric Patients
- Does not need to be exchanged
 - Mediastinoscopy followed by Thoracotomy
 - Bilateral Lung Transplantation
 - Post-op ventilator management
Bronchial Blocker Insertion

- Regular intubation technique
- Rotation towards operative lung
- Trachea cuff is inflated
- Fiberoptic assisted placement of Blocker into operative lung
- Collapse of operative lung
 - Exhalation via distal opening in Blocker

Bronchial Blocker Tubes

- Univent Tube
 - Bronchial Block in a small channel bored into the tube
 - Silastic Construction
 - Disadvantages:
 - May be difficult to place blocker
 - Prolonged collapse of operative lung
 - May become dislodged with surgical manipulation

- Arndt Endobronchial Blocker
 - Regular Endotracheal Tube
 - Adaptor placed on ETT
 - Blocker is guided by a snare attached to a fiberoptic bronchoscope
 - Aerosol Lubricant
 - Disadvantages:
 - Difficult positioning into operative bronchus
 - Can be caught on Murphy’s Eye or Carina during insertion

Positioning:

- Supine
 - Sternotomy or Anterior Thoracotomy
- Lateral
 - Lateral or Posterior Lateral Thoracotomy

Physiology

- Lateral Decubitis Positioning for Thoracic Procedures
 - Presents additional challenges to OLV
 - Dependent lung has pressure of medistinal structures
 - Relaxed diaphragm will increase intrathoracic pressure from abdominal contents moving cephalad

- Ventilation and perfusion are greatest in the dependent lung field
 - Minute Ventilation = 4 liters/min
 - Cardiac Output = 5 liters/min
 - Normal V/Q Ratio = 0.8
 - Determines Shunt State vs. Dead Space
West Lung Zones

- **Zone 1 – Alveolar Deadspace**
 - Upper Lung Field
 - $P_A > P_a > P_v$
- **Zone 2 – Waterfall Region**
 - Falls into pulmonary venous system
 - $P_a > P_A > P_v$
- **Zone 3 – Dependent Lung Field**
 - $P_a > P_v > P_A$
 - Continuous Blood Flow

SHUNT

- Shunt – perfusion no ventilation
- $V/Q = 0$
- Normal Physiologic Shunt 2-5%
- Causes:
 - Airway Obstruction
 - Alveolar Collapse
 - Alveolar Obstruction (Pneumonia / Edema)

DEADSPACE

- Deadspace – ventilation no perfusion
- $V/Q = \infty$
- Normal Anatomic Deadspace 2mL/kg
- Causes:
 - Clots
 - PE
 - Fat Embolism

Physiology of Shunt

- Ventilation/Perfusion Mismatch
- While one lung is being ventilated – both lungs are still receiving deoxygenated blood from the heart
- Creates the situation of pulmonary shunt
- Blood enters the arterial system WITHOUT being oxygenated

V/Q Shunt & Deadspace

- Perfusion, No Ventilation
 - $V/Q < 0.8$
 - Alveolar Collapse
 - Alveolar Block
- Ventilation, No Perfusion
 - $V/Q > 0.8$
 - Clots
 - PE

Physiology: Lateral Decubitus Positioning

<table>
<thead>
<tr>
<th>Lung Field</th>
<th>Awake Respiration</th>
<th>Anesthetized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ventilation</td>
<td>Perfusion</td>
</tr>
<tr>
<td>Non-dependent Lung (Up Lung)</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Dependent Lung (Down Lung)</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Calculation of Alveolar Oxygen Level

- Determination of Hypoxemia
 - V/Q Mismatch
 - Hypoventilation
- Alveolar:arterial Gradient ($A:a$ Gradient)
 - Calculation to determine the effectiveness of gas exchange at the Alveolar level
 - $PAO_2 - PaO_2$
 - Normal 5-15 mmHG (Room Air)
 - Normal Physiologic V/Q Mismatch
 - Hypoxia + Normal $A:a$ Gradient = Hypoventilation
 - Hypoxia + Elevated $A:a$ Gradient = V/Q Mismatch
Calculation of Alveolar Oxygen Level

- **Alveolar Oxygen Calculation (PAO\(_2\))**
 \[PAO_2 = \text{FiO}_2 \times (PB - PH_2O) - PaCO_2/RQ \]

- Respiratory Quotient (RQ) = 0.8
- 250 mL of Oxygen diffuses from alveoli to pulmonary circulation
- 200 mL of Carbon Dioxide moves from pulmonary circulation to alveoli
- Oxygen 250mL/Carbon Dioxide 200mL = 0.8

Example:
ABG on Room Air (FiO\(_2\) = 0.21)
- \(PaO_2 \) 90
- \(PaCO_2 \) 40

\[PAO_2 = \text{FiO}_2 \times (PB - PH_2O) - PaCO_2/RQ \]
\[PAO_2 = 0.21 \times (760 - 47) - 40/0.8 \]
\[PAO_2 = 149.7 - 50 = 99.7 \]
\[PAO_2 - PaO_2 = 9.7 \]

Physiology: Hypoxic Pulmonary Vasoconstriction

- Mechanism of Pulmonary Vasoconstriction not completely understood
- Redox theory – possible explanation
 - Alveolar hypoxemia reduces the activated oxygen species
 - Leads to inhibition of voltage gated Potassium channel
 - Inflow of extracellular calcium
 - Results in localized vasoconstriction
- HPV is reported to decrease Cardiac Output to non-ventilated lung 20-25%

Factors that effect of efficiency of HPV
- High Cardiac Output / Hypervolemia
 - Recruit constricted vasculature
- Hypovolemia
 - Vasculature constriction of well ventilated lung fields
- Excessive Tidal Volume or high PEEP
- Hypocapnia
- Hypothermia
- Infection

Medications that effect of efficiency of HPV
- Inhalational Gases > 1 to 1.5 MAC
 - All volatile anesthetics inhibit HPV
- Calcium Channel blockers
 - Verapamil, Nifedipine, Nicardipine
- Direct acting vasodilators
 - Nitroglycerin, Nitroprusside, Hydralazine
- Beta Agonists - Dobutamine
- Vasoactive Medications
 - Potential to vasoconstrict blood flow to oxygenated area
 - Epinephrine, Dopamine & Phentylephrine
Physiology: Hypoxic Pulmonary Vasoconstriction

- Potentiation of perfusion to well oxygenated lung fields
- Nitric Oxide
 - Endothelial smooth muscle vasodilator
 - Selective vasodilation of ventilated lung fields
 - Studies found little effect on improving oxygenation
- Almitrine (Duxil)
 - Has effects on peripheral chemoreceptors in Carotid Bodies
 - Respiratory stimulate to improve oxygenation in patients with COPD
 - Studies utilizing Nitric and Almitrine – found an increase in oxygenation
 - Approved in Europe for short term therapy
 - Neuro toxic effects on myelinated fibers

Ventilator Techniques

- Maintain two lung ventilation as long as possible.
- Inspired Flow of 100% Oxygen
 - Bleomycin – cause oxygen toxicity
 - Adjust FiO2 as necessary
- Keep peak airway pressure < 30mmHG
 - Pressure Control Ventilation preferred
 - Study in PCV vs. VCV – no significant difference in PaO2
- PaCO2 30-40 mmHG
 - Prevent Hyperventilation
 - Hypopcapnia in the ventilate lung field with increase vascular resistance – inhibit HPV

Ventilator Techniques

- Tidal Volume (TV) Strategies:
 - High Tidal Volume No PEEP
 - Low Tidal Volume with PEEP
 - TV of 8-15 mL/kg are reported to have minimal effect on HPV
 - TV of less than 6 mL/kg has been implicated with atelectasis in the dependent lung

Ventilator Techniques

- Higher Tidal Volumes (10-15 mL/kg)
 - Larger TV were recommended to prevent atelectasis in the dependent lung field
 - Volutrauma
 - Overdistention of Lung Segments
 - Increased pulmonary resistance
 - Shunt blood towards the non ventilated
 - Implicated with inflammatory mediators
 - Fibrin Deposits
 - Acute Lung Injury

Ventilator Techniques

- Physiologic Tidal Volume
 - 6-8 mL/kg TV (cited by numerous sources)
 - Avoid acute lung injury
 - Small Amount of PEEP
 - Higher settings of PEEP can constrict alveolar circulation and increase shunt.
 - Debate over PEEP
 - Replenish FRC
 - Shunt blood away from ventilated lung fields
 - Hemodynamic compromise

Ventilator Techniques

- Termination of OLV
 - Manual Ventilation of 20-30 cmH2O
 - Recruitment maneuver to re-expand atelectatic lung tissue
 - Surgical assessment of lung tissue / hemorrhage
Ventilator Techniques

- Extubation or Exchange
- Type of Procedure
 - Complex Lung Resection, Esophagogastrectomy, Thoracic Aortic Aneurysm repair
- Need for post-op ventilation
- Unexpected fluid shifts/blood loss
- Airway edema
- Facial edema
- Sustained neuromuscular blockade

Hypoxemia – One Lung Ventilation

- Reported to occur in 5-10% of OLV Procedure
- Improve Alveolar Ventilation & Pulmonary Perfusion
- Assessment of DLT or Bronchial Blocker Device placement
 - Fiberoptic Bronchoscopy
 - High Peak Airway Pressures
 - Pneumonecmy – early compression/clamping of the surgical side pulmonary artery
 - Divert blood flow to ventilated lung field

Hypoxemia

- Application of PEEP to ventilated lung
- Continuous Insufflation of oxygen into operative lung
- Changing TV & respiratory rate

Hypoxemia

- Periodic inflation of the collapsed lung with oxygen
- CPAP to Nondependent/Nonventilated lung
 - 5-10 cmH2O to non-ventilated lung
 - Can interfere with surgical exposure
 - Closed chest procedure (Thoracoscopy)
 - RE-EXPANSION of Collapsed Lung until Oxygen Saturation Stabilized
 - Communication with Surgeon

Complications

- Displacement of Airway Device during positioning
- Inability to place airway device
- Lesion involving mainstem bronchus
- Airway Fire
 - Application of CPAP or continuous oxygen to the non-ventilated/surgical side lung field can increase the risk of fire
 - Suturing of Airway Device into a mainstem bronchus

CPAP to Non Ventilated Lung
Complications

- Pneumothorax of dependent/ventilated lung
- Tracheal Injury from airway device
- Laryngeal Edema
- Bilateral Vocal Cord Paralysis
 - Recurrent Laryngeal nerve injury
- Acute Lung Injury
- Re-expansion Pulmonary Edema
 - Rare not well understood phenomena
 - Similar to ARDS
 - Result from alveolar-capillary membrane disruption

Complications - Positioning

- Brachial Plexus Injuries
 - Overextension of Neck
 - Overextension of Arms
 - Rib retraction
 - Pneumonectomy - severe the long thoracic nerve
 - Serratus Anterior Muscle
- Ulnar Injuries
 - Improper padding of elbows (cubital tunnel)
- Dependent Eye Injury
 - Hypotension
 - Improper padding of head

Summary

- Thoracic procedures involving one lung ventilation provide a special challenge to the anesthesia team.
- Careful pre-operative evaluation can provide useful data on patient’s lung function prior to one lung ventilation.
- Double lumen and bronchial blocker airway devices can provide suitable means to conduct one lung ventilation.

Questions
References

Special Thanks:

- Carol Raskiewicz CRNA, DNP
- Ann Culp CRNA, DNP
- Sue Elczyna CRNA, MS
- Wilkes-Barre General Hospital Anesthesia Dept
- U of S/WVHCs School of Nurse Anesthesia
 - Class of 2011
 - Class of 2012